Shape Description via Persistent Homology

Afra Zomorodian

Department of Computer Science Stanford University

Shape Description

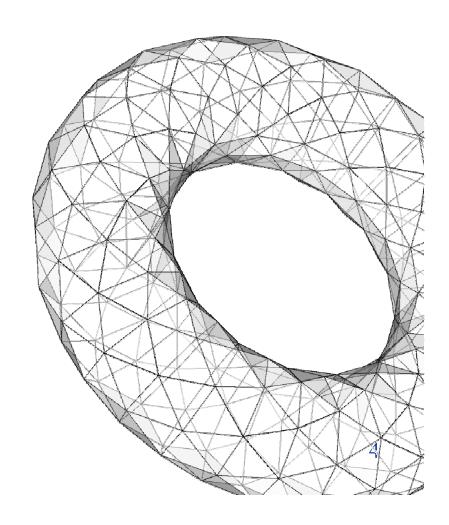
- A shape is any closed subset of a Euclidean space
- Questions:
 - Feature identification
 - Matching
 - Classification
 - Parameterization of a family
- Shape descriptor: compact representation
 - Moment invariants
 - Medial axis transform or skeleton
 - Fourier parametrization
 - Shape distributions
 - Multiresolution Reeb graphs

Invariants

- An invariant is a map that assigns the same object to shapes of the same *type*.
- Shape invariants (Felix Klein, Erlanger Programm, 1872)
 - 1. Transform space in a fixed way
 - 2. Observe properties that do not change
- Rigid motions: Euclidean geometry
- Smooth diffeomorphisms: topology

Geometry versus Topology

- Euclidean geometry
 - What does the shape look like?
 - Local
 - Quantitative
 - Low-level
- Topology
 - How is a shape connected?
 - Global
 - Qualitative
 - High-level



IPM International Workshop on Computer Vision

Homology

- An algebraic invariant that captures how shapes are connected
- For a space X, there is a group $H_k(X)$ in each dimension k
- The rank β_k of $H_k(X)$ is the kth Betti number
- The Betti numbers count topological attributes:

-
$$\beta_0$$
: # components
- β_1 : # tunnels or loops
- β_2 : # voids

F A B

$$\beta_1 = 0 \qquad \beta_1 = 1 \qquad \beta_1 = 2$$

Coarse Invariant

- Cannot tell difference between a 'U' and a 'V'
- Sharp features

 $\beta_1 = 0 \qquad \beta_1 = 0$

- Cannot tell difference between a circle and an ellipse
- Soft features

$$\bigcap_{\beta_1 = 1} \qquad \beta_1 = 1$$

Approach

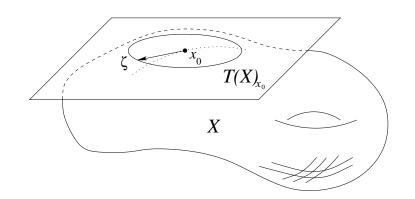
- Geometry: differentiating power
- Topology: classifying power
- Idea: combine the two
 - Apply topology to a derived space
 - Enrich derived space with geometric information
- Tools
 - Tangent Complex
 - Filtered by curvature
 - Persistent Homology
- Deliverables
 - Barcode shape descriptor
 - Metric over the space of barcodes

Overview

- Theory
 - Tangent Complex
 - Persistence
 - Filtered Tangent Complex
 - Mathematical Objects
- Practice
 - Point Cloud Data
 - Approximating the Tangent Complex
 - Shape Classification
 - Parameterization of Shapes

Tangent Complex

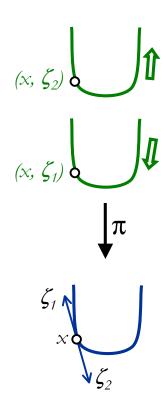
- Let $X \subseteq \mathbb{R}^n$ be a space.
- We pair a tangent ζ at a point $x \in X$ to get $T^{0}(X) \subseteq X \times \mathbb{S}^{n-1}$



$$T^{0}(X) = \left\{ (x,\zeta) \mid \lim_{t \to 0} \frac{\mathrm{d}(x + t\zeta, X)}{t} = 0 \right\}$$

- The tangent complex T(X) of X is the closure of T^0
- The projection $\pi: T(X) \to X$ projects (x, ζ) to its basepoint x
- Basepoint $x \in X$ has fiber $T(X)_x = \pi^{-1}(x) \in \mathbb{S}^{n-1}$

Curve Example



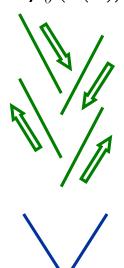
T(X) has two components: $\beta_0(T(X)) = 2$

$$\rho_0(I(\Sigma)) - \Sigma$$

There are two points in its fiber $\pi^{-1}(x)$ in the tangent complex T(X)

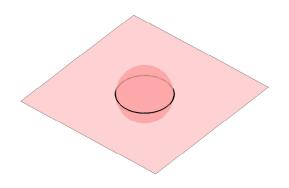
Every point *x* on a smooth curve *X* has two tangent directions.

A corner point has four tangent directions: $\beta_0(T(X)) = 4$

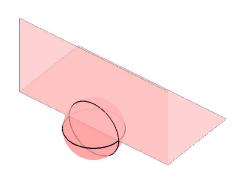


Surface Fibers

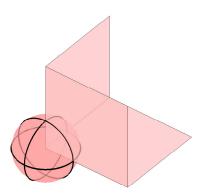
• The fiber for a point on a surface is a set of circles that intersect pairwise



Smooth: 1 circle or \mathbb{S}^1

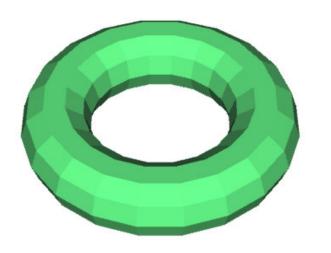


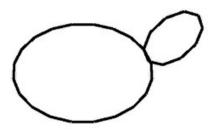
Edge: 2 circles or $(\mathbb{S}^1)^3$



Cone: 3 circle or $(\mathbb{S}^1)^7$

Persistence



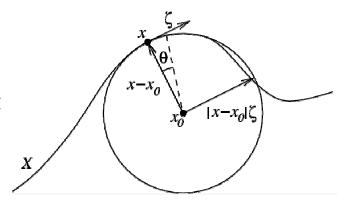


- As the space evolves, topological attributes are created and destroyed, each having a lifetime of existence.

 Birth Death
- Persistent Homology gives us these lifetimes as a collection of intervals, a persistence barcode.

Second Order Contact

- We incrementally construct the tangent complex by looking at the curvature at each point.
- $(x, \zeta) \in T^0(X)$ has a circle of second order contact if $\exists x_0 \in \mathbb{R}^n$ such that $(x - x_0) \cdot \zeta = 0$ and



$$\lim_{\theta \to 0} \frac{\mathrm{d}(x_0 + \cos\theta \cdot (x - x_0) + \sin\theta \cdot |x - x_0| \cdot \zeta, X)}{\theta^2} = 0.$$

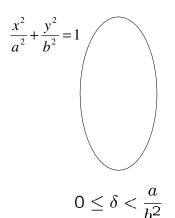
Filtered Tangent Complex

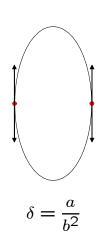
- Define $\rho(x, \zeta) = |x x_0|$ to be the radius the circle of second order contact, if it exists
- Let $T_{\delta}^{0}(X)$ be points $(x, \zeta) \in T^{0}(X)$ that have circle of second order contact with $1/\rho(x, \zeta) \leq \delta$.
- Let $T_{\delta}(X)$ be the closure of $T_{\delta}^{0}(X)$.
- The filtered tangent complex $T^{filt}(X)$ is the family $\{T_{\delta}(X)\}_{\delta > 0}$.
- The tame tangent complex $T^{tame}(X)$ is $\bigcup_{\delta} T_{\delta}(X)$.

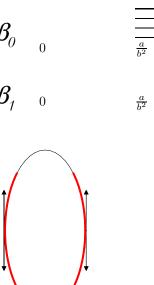
Differentiating a Circle from an Ellipse

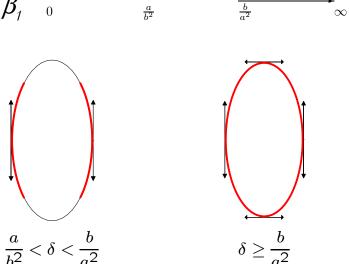
 T^{filt} (circle of radius R) is simple: the entire complex (2 copies of circle) appears when $\delta = 1/R$.

 T^{filt} (ellipse) evolves through a stage with four components: points at lower curvature appear earlier.









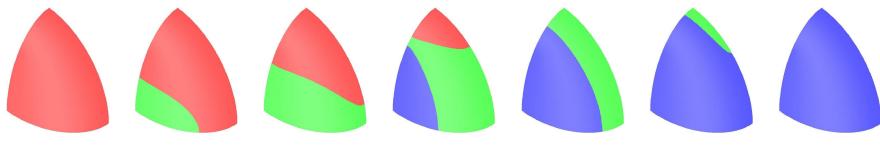
Describing an Ellipsoid

- The evolution of T^{filt} depends upon the ordering of six critical values: the principal curvatures κ_1 and κ_2 at the ellipsoid extrema
- eta_0 $\overline{\beta_0}$ $\overline{\beta_1}$ $\overline{\beta_1}$ $\overline{\beta_1}$ $\overline{\beta_1}$ $\overline{\beta_1}$ $\overline{\beta_1}$ $\overline{\beta_1}$ $\overline{\beta_2}$ $\overline{\beta_1}$ $\overline{\beta_2}$ $\overline{\beta_1}$ $\overline{\beta_2}$ $\overline{\beta_1}$ $\overline{\beta_2}$ $\overline{\beta_2}$ $\overline{\beta_1}$ $\overline{\beta_2}$ $\overline{\beta_2}$ $\overline{\beta_2}$ $\overline{\beta_1}$ $\overline{\beta_2}$ $\overline{\beta_2}$ $\overline{\beta_2}$ $\overline{\beta_2}$ $\overline{\beta_1}$ $\overline{\beta_2}$ \overline

• We show the case $a^2c < b^3 < ac^2$ for ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$

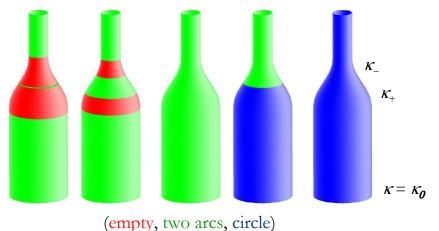
 $oldsymbol{eta}_2$ 0 λ_1 μ_1 λ_2 u_1 u_2 u_2 u_2 u_3

$$\beta_3 \quad 0 \quad \lambda_1 \quad \mu_1 \quad \lambda_2 \quad \nu_1 \quad \mu_2 \quad \longrightarrow \infty$$

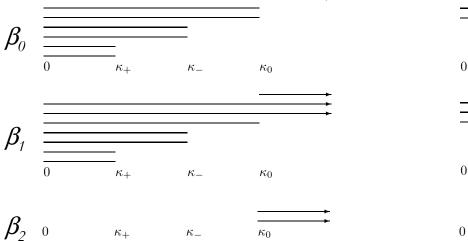


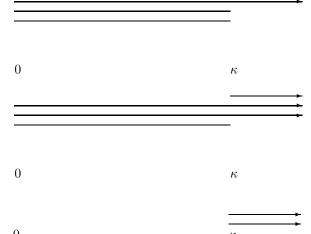
(empty, two arcs, circle)

Differentiating a Bottle from a Glass



- We model the glass as the bottom of the bottle.
- The evolution of T^{filt} depends on neck curvatures κ_+ , κ_- and crosssectional curvature $\kappa = \kappa_0$ at the bottom.

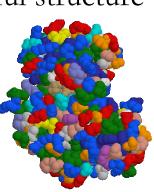


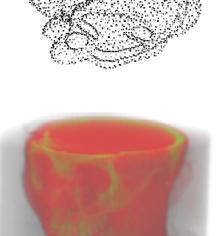


Point Cloud Data

- Nearly all shape data
 - 2D: images
 - 3D: surface data, molecules
 - *n*D: shape spaces
- Traditional approach: construct useful structure
 - Vision: OCR
 - Graphics: surface reconstruction
 - CAD: conversion to B-spline surfaces
- Recent approach: first class object
 - Shape representation
 - Rendering
 - Modeling



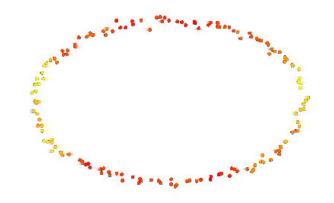




Fibers

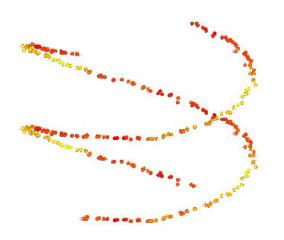
- PCD $P \subset X$
- We compute fibers $\pi^{-1}(P)$ by Total Least Squares using k-nearest neighbors

Filtering by Curvature



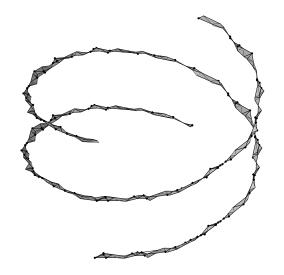
- Transform points to coordinate frame provided by tangent computation
- Fit osculating parabola instead of osculating circle

Approximating T(X)



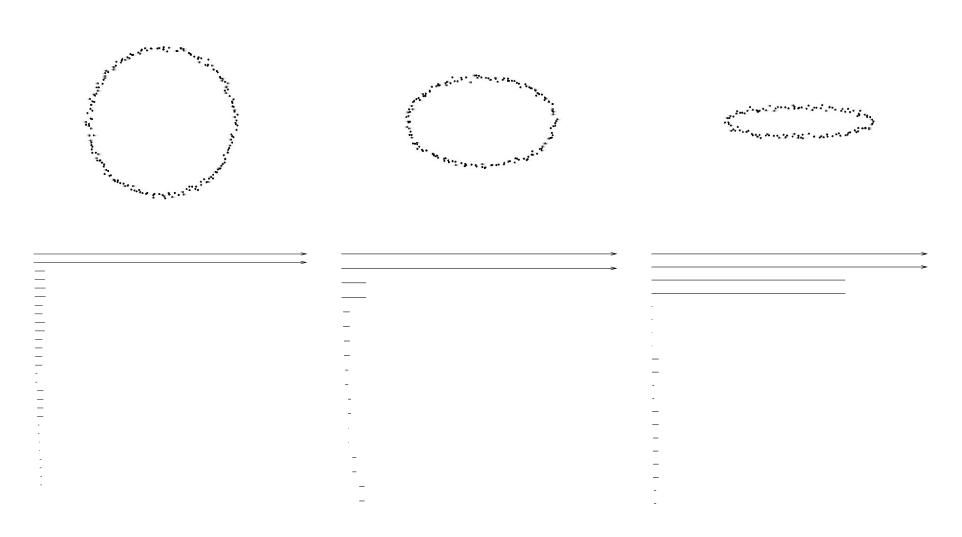
- $\mathbb{R}^n \times \mathbb{S}^{n-1}$ as $ds^2 = dx^2 + \omega^2 d\zeta^2$
- $d^2(\tau,\tau') = \sum_{i=1}^n (x_i x_i')^2 + \omega^2 \sum_{i=1}^n (\zeta_i \zeta_i')^2$
- $T(X) \approx \bigcup_{p \in \pi^{-1}(P)} B_{\varepsilon}(p)$

Complex



- Rips complex
- $R_{\varepsilon}(M) = \{\text{conv } T \mid T \subseteq M, d(s, t) \le \varepsilon, s, t \in T\}$

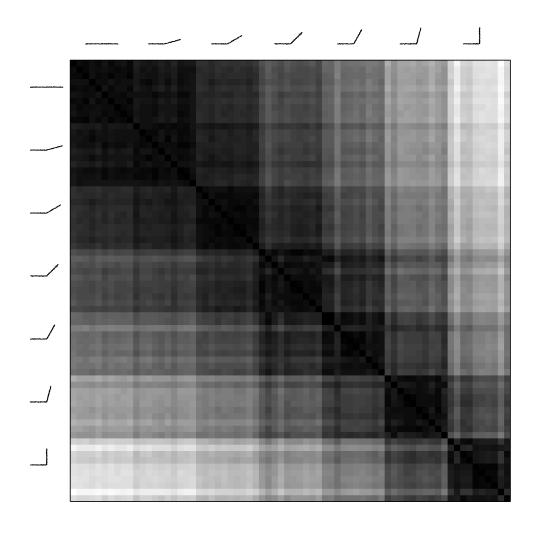
Family of Ellipses



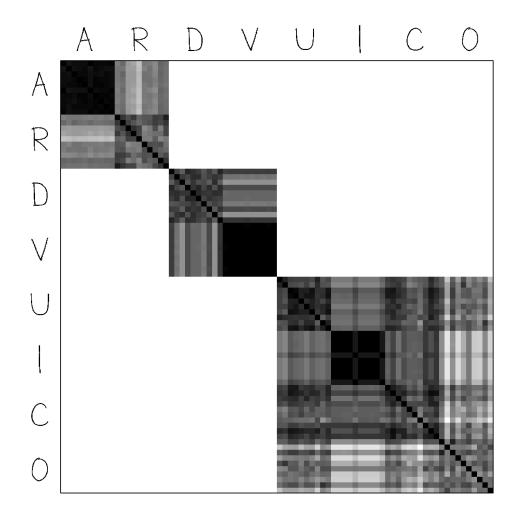
Barcode Metric

- Let *I*, *J* be any two intervals in a barcode.
- We define their dissimilarity $\delta(I, J) = |I \cup J I \cap J|$
- Given a pair of barcodes B_1 and B_2
- A matching is a set $M(B_1, B_2) \subseteq B_1 \times B_2$, so that any interval in B_1 or B_2 occurs in at most one pair (I, J)
- Let M_1 , M_2 be the matched intervals from B_1 , B_2 and N be the unmatched intervals in the matching
- Let $d_M(B_1, B_2) = \sum_{(I, J) \in M} \delta(I, J) + \sum_{L \in N} \{ |L| \}$
- Metric: $D(B_1, B_2) = \min_{M} d_M(B_1, B_2)$

Articulated Arm



Letter Classification



Conclusion

- Apply persistent homology to geometry-rich derived space to get a compact shape descriptor called barcode
- Provide a metric over the space of all barcodes
 - Comparison
 - Matching
 - Classification
- Compute tangent complexes for Curve Point Cloud Data
- Future Work:
 - Surface PCD
 - Complexes with lower intrinsic dimension