Let M be a compact manifold without boun-
dary.

To every Riemannian metric g on M, we as-
sociate its Laplace-Beltrami operator A4 and
denote by A1 (M, g) the smallest positive ei-
genvalue of Ay :

\V4 2
M(M.g) = inf M é' Y9
Jar fog=0  Jnr F=vg
Problem : To optimize the functional g —
A1(M, g).

Since A\ (M, kg) = %Al(M, g), a normalization
is needed. We restrict the functional to

R(M) = {metrics of volume 1 on M}.
Proposition : inf A (M,qg) = 0.

Hersch (1970) : Vg € R(S?),

A1 (S?,g) < 8,

where the equality holds iff ¢ = can.



Yang - Yau (1980) : If M is a compact orien-
table surface, then

sup A1 (M,g) < 8r(genus(M) + 1).
gER(M)

E.-llias (1984) :

sup Aj1(M,g) < 8m
gER(M)

Li - Yau (1982) : 1) Vg € R(RP?),

genus(M) + 3]
5 .

M (RP?,g) < 127

where the equality holds iff ¢ = can.
2) If M is a compact nonorientable surface,
then

sup A (M,g) <24rx(genus(M) + 1).
gER(M)

Colbois-Dodziuk (1994) : If dim M > 3, then

sup  A1(M,g) = +oo.
geER(M)



We obtain a relevant topological invariant of
surfaces by setting

AN(M)= sup Xi1(M,g) —Sup>\1(M g)A(M, g)
gER(M)

where A(M, g) is the area of (M, g).

Natural questions :

1. How does A(M) behave in terms of the
genus of M 7

2. Can one determine A(M) ?

3. Does the supremum A(M) achieved ? what
can one say about the (eventual) extre-
mal metrics 7



Concerning question 1 :

Colbois-E.(2003) : A(M) is an increasing func-
tion of the genus of M with a linear growth
rate.

Concerning questions 2 and 3 :

The results of Hersch and Li - Yau read :

A(S?) = \1(S?, can) A(S?, can) = 8«

and

ARP?) = A{(RP?, can) A(RP?, can) = 127.
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Moreover, in each case, can is the "‘only

extremal metric.

More about question 3 :

Nadirashvili (1996) : if M has genus 1 (i.e
torus T2 or Klein bottle K?2), then the supre-
mum A(M) is achieved by at least one regular
metric.



Extremal metrics

Despite the non-differentiability of the func-
tional g — A{(M,g) with respect to metric
deformations, a natural notion of critical me-
tric can be introduced. Indeed, perturbation
theory enables us to prove that, for any ana-
lytic deformation g. of a metric g, the func-
tion ¢ — A (M, g:) always admits left and
right derivatives at € = 0 such that

0199 <M
The metric g is then said to be critical for
the functional Aq if, for any analytic volume
preserving invariant deformation g of g, one
has

AL (M, g2)

which means that

Y

d
S 0 S )‘1(M7g€)
de

e=0 e=0

A1(M,ge) < A1 (M, g) +o(e) ase— 0.

In particular, if a metric g is a local minimizer
or a local maximizer of A1 on R(M), then g is
a critical metric in the sense of this definition.



E.-Ilias (2000) : A metric g is critical for \q iff

there exists a finite family hq,---,hg oOf first
eigenfunctions of Ay, satisfying
Zdhz’@dhz’ = g. (1)
i<d

Condition (1) means that the map
h=(h1, - ,hg) : (M,g) — RY

IS a an isometric immersion.

Takahashi (1966) : Let h = (hy,---,hy) :
(M, g) — R% be an isometric immersion. The
following conditions are equivalent

1. dX\; Aghi = \h;
2. h(M) is a minimal submanifold of the

d—1 2 :
sphere S ( )\(Myg)). In particular,

> 2
M= gy )




Hence, ¢ is critical iff (M, g) can be realized
as a minimal submanifold of a sphere by the
means of its first eigenfunctions.

E.-Ilias (1986) : If (M, g) is isometrically im-
mersed as a minimal submanifold of a sphere
by the first eigenfunctions (or, equivalently,
if g is a critical metric of A1 in R(M)), then

i) g is "unique” in its conformal class,

ii) g maximizes A1 over its conformal class,
under the "volume preserving” constraint.

iii) For any metric ¢’ conformal to g one has

Isom(M, g") C Isom(M,g).

Consequence : On S?2 (resp. RP?) the stan-
dard metric can is, up to dilatations, the unique
critical metric.



What about the Torus?

E.-Ilias (2000) : There exist (up to isome-
tries) exactly two possible immersions of a
torus as a minimal surface of a sphere by the
first eigenfunctions :

- Clifford torus : h : 1[{{2/22 — §3, with
(62@7r:c 227Ty)

he(z,y) = T

- Equilateral torus : heq : R?/Z(1, O)@Z( );>
S°, with

heq(z,y) = \%(64@/@ (2im(a-y/V3)  2im(e+y/V3)y

Consequently, the corresponding flat metrics
gc1 €t geq are, up to dilatations, the only cri-
tical metrics of A\; on the torus T2.

Consequence :

872
/\(TQ) — Al(T27geq)A(T27geq> — %7

and geq Is the only maximizer.



What about the Klein bottle K 7

To every a > 0, we associate the rectangu-
lar lattice ', = Z(27,0) @ Z(0,a) C R? and
denote by g, the induced flat metric on the
torus T2 ~ R?/I",. The Klein bottle K is dif-
feomorphic to the quotient of T2 by the in-
volution s : (z,y) — (x + 7, —y). We denote
by gq the flat metric induced on K from the
covering (T2,5.) — K.

Any Riemannian metric on K is conformal to
one of the metrics gq.

If g = fgq is a critical metric on K, then
Isom(K, gq) C Isom(K,g).
The group Isom(K, g4) contains the St-action

(z,y) — (x +t,y), t € [0, n].

T herefore, f does not depend on the variable

I.



Consider a metric ¢ = f(y)ga. The Lapla-
Cian Ay can be identified with the opera-
tor —ﬁ (8% + 85) acting on Mg-periodic and
s-invariant functions of R2. Separating va-
riables, the eigenspaces are generated by func-
tions of the form ¢, (y) cos kx and ¢ (y) sin kx
where, VEk, ;. is periodic of period a, pr(—y) =

(1) pp(y) et

op = (k% = Af)y,

for some A\ > 0.

Since a first eigenfunction has exactly two
nodal domains (Courant), the first eigens-
pace is generated by :

©o(y), v1(y)cosz, ¢1(y)sinz,

p2(y) cos 2z, po(y)sin2x.
with, unless they are identically zero,

- g and 1 admit exactly two zeros in [0, a),
- oo does not vanish in [0,a).



Now, we |look for an isometric immersion h =
(h1, -+, ha) © (K, f(y)ga) — ST 1(r) by the
first eigenfunctions. Without lack of gene-
rality, one may assume that » = 1 and that
hi,---,hg are linearly independent, hence d =
4 ou 5.

d =4 : There exists pc O(4) s. t.

poh = (p1(y)e, ps(y)e?®),

with
o+ 5 =1
and, since h is isometric, |0yh|? = |0zh|° = f,
which means
2 2
W1+ =97 +4p5=7F
But this contradicts ¢? 4+ ¢35 = 1 which tells

us that 1 achieves its max at the same point(s)
where ¢, achieves its min, and reciprocally.



Therefore, d = 5 and there exists p € O(5)
S.t.

poh = (po(¥),p1(y)e, po(y)e®®)
with

v+t +es=1
and

2 2 2 2 2
wot+ @1+ es=pi+4p5="Ff

In particular, ¢1 and ¢o are solutions of the
system

o] = (1 —2p% — 8p5)¢1,

ph = (4 — 2¢% — 8¢3)po;



Proposition Let a > 0 and f a positive per-
iodic function of period a. the following are
equivalent :

(I) The metric g = f(y)gq on K is critical for
A1 on R(K).

(II) There exists a homothetic minimal im-
mersion h : (K,g) — S4-1 by the first eigen-
functions of Ay.

(III) £ is proportional to ¢% + 4¢3, where @1
and o are two periodic functions of period
a such that :

(a)
o] = (1 — 27 — 8p3)p1

05 = (4 — 207 — 8¢5)po;
(b) ¢1 isodd, ¢s is even and ¢} (0) = 2¢2(0) ;

(c) ¢1 has exactly two zeros in a period and
po IS positive everywhere;

(d) 92 4+ ¢3 < 1 where the equality holds at
exactly two points in a period.



The problem reduces to the study of the sys-
tem

901 — (1 )9017
{ = (4 - 290% %)902, (3)
with the initial conditions (Condition (b))

{ »1(0) =0, ©2(0) =p, (4)
¢} (0) = 2p, ¢5(0) =0,

ou p € (0,1] (Condition (d)).

One has to determine the value(s) of p for
which the system admits a periodic solution
(o1, o) satisfying (Condition (¢)) :

(5)

p1 has two zeros in a period,
po IS positive everywhere.

Jakobson, Nadirashvili et Polterovich (2003) :

For p = ,/3/8, the solution of (3)-(4) is per-
iodic and satisfies (5). The corresponding cri-
tical metric gg of A1 on R(K) is given by :

9+ (1+8cos?v)? (. 5 dv?
du“ +
1 4+ 8cos? v 1 4+ 8cos? v
O0<u<gz 0<v<m.

go —



El Soufi-Giacomini-Jazar (2005) : Let (¢1, v2)
the solution of (3)-(4).

1. Vp € (0,1], p # V3/2, (¢1,92) is either
périodic or quasi-periodic.

2. For p = @ (¢1,92) tends to the origin
as y — oo (hence, it is neither periodic
nor quasi-periodic).

3. For all p € (v/3/2,1], po vanishes at least

once in each period. Hence, Condition (5)
IS not satisfied.

4. There exists a countable dense subset
P C (0,/3/2), with \/3/8 € P, such that
the solution (1, po) corresponding to p €
(0,4/3/2) is periodic if and only if p € P.

5. For p =,/3/8, (¢1,¢2) satisfies (5) and,

for any p € P, p # \/% 1 admits at
least 6 zeros in a period.
Conclusion : The initial value p = ,/3/8 is
the only one to correspond to a periodic so-
lution satisfying (5). Therefore, the metric gg
IS, up to dilatations, the unique critical metric
of A1 on K.



With the existence result of Nadirashvili, we
deduce the following

Corollary

\/7
AK) = (K, g0)A(K, go) = 127TE(—)
where E is the complete elliptic integral of
the second kind (A(K) ~ 13,3657).
Moreover, the metric gg is, up to dilatations,
the only maximizing metric.

The immersion of the klein bottle (K, gg) as
a minimal surface of S* coincide with the bi-
polar surface of the Lawson’'s minimal torus
73,1 defined in S3 by

(u,v) — (cosvexp(3iu),sinvexp(iu)).



