Let M be a compact manifold without boundary.
To every Riemannian metric g on M, we associate its Laplace-Beltrami operator Δ_{g} and denote by $\lambda_{1}(M, g)$ the smallest positive eigenvalue of Δ_{g} :

$$
\lambda_{1}(M, g)=\inf _{\int_{M} f v_{g}=0} \frac{\int_{M}|\nabla f|^{2} v_{g}}{\int_{M} f^{2} v_{g}} .
$$

Problem : To optimize the functional $g \mapsto$ $\lambda_{1}(M, g)$.

Since $\lambda_{1}(M, k g)=\frac{1}{k} \lambda_{1}(M, g)$, a normalization is needed. We restrict the functional to
$\mathcal{R}(M)=\{$ metrics of volume 1 on $M\}$.
Proposition : $\inf _{g \in \mathcal{R}(M)} \lambda_{1}(M, g)=0$.
Hersch (1970) : $\forall g \in \mathcal{R}\left(\mathbb{S}^{2}\right)$,

$$
\lambda_{1}\left(\mathbb{S}^{2}, g\right) \leq 8 \pi,
$$

where the equality holds iff $g \cong$ can.

Yang - Yau (1980) : If M is a compact orientable surface, then

$$
\sup _{g \in \mathcal{R}(M)} \lambda_{1}(M, g) \leq 8 \pi(\operatorname{genus}(M)+1) .
$$

E.-Ilias (1984) :

$$
\sup _{g \in \mathcal{R}(M)} \lambda_{1}(M, g) \leq 8 \pi\left[\frac{\text { genus }(M)+3}{2}\right] .
$$

Li - Yau (1982) : 1) $\forall g \in \mathcal{R}\left(\mathbb{R} P^{2}\right)$,

$$
\lambda_{1}\left(\mathbb{R} P^{2}, g\right) \leq 12 \pi
$$

where the equality holds iff $g \cong$ can.
2) If M is a compact nonorientable surface, then

$$
\sup _{g \in \mathcal{R}(M)} \lambda_{1}(M, g) \leq 24 \pi(\operatorname{genus}(M)+1)
$$

Colbois-Dodziuk (1994): If $\operatorname{dim} M \geq 3$, then

$$
\sup _{g \in \mathcal{R}(M)} \lambda_{1}(M, g)=+\infty .
$$

We obtain a relevant topological invariant of surfaces by setting
$\wedge(M)=\sup _{g \in \mathcal{R}(M)} \lambda_{1}(M, g)=\sup _{g} \lambda_{1}(M, g) A(M, g)$ where $A(M, g)$ is the area of (M, g).

Natural questions:

1. How does $\wedge(M)$ behave in terms of the genus of M ?
2. Can one determine $\wedge(M)$?
3. Does the supremum $\wedge(M)$ achieved ? what can one say about the (eventual) extremal metrics?

Concerning question 1 :

Colbois-E.(2003) : $\wedge(M)$ is an increasing function of the genus of M with a linear growth rate.

Concerning questions 2 and 3 :

The results of Hersch and Li - Yau read :

$$
\wedge\left(\mathbb{S}^{2}\right)=\lambda_{1}\left(\mathbb{S}^{2}, c a n\right) A\left(\mathbb{S}^{2}, c a n\right)=8 \pi
$$

and

$$
\wedge\left(\mathbb{R} P^{2}\right)=\lambda_{1}\left(\mathbb{R} P^{2}, c a n\right) A\left(\mathbb{R} P^{2}, c a n\right)=12 \pi
$$

Moreover, in each case, can is the "'only"' extremal metric.

More about question 3 :

Nadirashvili (1996) : if M has genus 1 (i.e torus \mathbb{T}^{2} or Klein bottle \mathbb{K}^{2}), then the supremum $\Lambda(M)$ is achieved by at least one regular metric.

Extremal metrics

Despite the non-differentiability of the functional $g \mapsto \lambda_{1}(M, g)$ with respect to metric deformations, a natural notion of critical metric can be introduced. Indeed, perturbation theory enables us to prove that, for any analytic deformation g_{ε} of a metric g, the function $\varepsilon \mapsto \lambda_{1}\left(M, g_{\varepsilon}\right)$ always admits left and right derivatives at $\varepsilon=0$ such that

$$
\left.\frac{d}{d \varepsilon} \lambda_{1}\left(M, g_{\varepsilon}\right)\right|_{\varepsilon=0^{+}} \leq\left.\frac{d}{d \varepsilon} \lambda_{1}\left(M, g_{\varepsilon}\right)\right|_{\varepsilon=0^{-}} .
$$

The metric g is then said to be critical for the functional λ_{1} if, for any analytic volume preserving invariant deformation g_{ε} of g, one has

$$
\left.\frac{d}{d \varepsilon} \lambda_{1}\left(M, g_{\varepsilon}\right)\right|_{\varepsilon=0^{+}} \leq 0 \leq\left.\frac{d}{d \varepsilon} \lambda_{1}\left(M, g_{\varepsilon}\right)\right|_{\varepsilon=0^{-}},
$$

which means that

$$
\lambda_{1}\left(M, g_{\varepsilon}\right) \leq \lambda_{1}(M, g)+o(\varepsilon) \quad \text { as } \varepsilon \rightarrow 0 .
$$

In particular, if a metric g is a local minimizer or a local maximizer of λ_{1} on $\mathcal{R}(M)$, then g is a critical metric in the sense of this definition.
E.-Ilias (2000) : A metric g is critical for λ_{1} iff there exists a finite family h_{1}, \cdots, h_{d} of first eigenfunctions of Δ_{g} satisfying

$$
\begin{equation*}
\sum_{i \leq d} d h_{i} \otimes d h_{i}=g . \tag{1}
\end{equation*}
$$

Condition (1) means that the map

$$
h=\left(h_{1}, \cdots, h_{d}\right):(M, g) \rightarrow \mathbb{R}^{d}
$$

is a an isometric immersion.

Takahashi (1966) : Let $h=\left(h_{1}, \cdots, h_{d}\right)$: $(M, g) \rightarrow \mathbb{R}^{d}$ be an isometric immersion. The following conditions are equivalent

1. $\exists \lambda ; \Delta_{g} h_{i}=\lambda h_{i}$
2. $h(M)$ is a minimal submanifold of the sphere $\mathbb{S}^{d-1}\left(\sqrt{\frac{2}{\lambda(M, g)}}\right)$. In particular,

$$
\sum_{i \leq d} h_{i}^{2}=\frac{2}{\lambda(M, g)}
$$

Hence, g is critical iff (M, g) can be realized as a minimal submanifold of a sphere by the means of its first eigenfunctions.
E.-Ilias (1986) : If (M, g) is isometrically immersed as a minimal submanifold of a sphere by the first eigenfunctions (or, equivalently, if g is a critical metric of λ_{1} in $\mathcal{R}(M)$), then
i) g is "unique" in its conformal class,
ii) g maximizes λ_{1} over its conformal class, under the "volume preserving" constraint.
iii) For any metric g^{\prime} conformal to g one has

$$
\operatorname{Isom}\left(M, g^{\prime}\right) \subset \operatorname{Isom}(M, g) .
$$

Consequence: On \mathbb{S}^{2} (resp. $\mathbb{R} P^{2}$) the standard metric can is, up to dilatations, the unique critical metric.

What about the Torus?

E.-Ilias (2000) : There exist (up to isometries) exactly two possible immersions of a torus as a minimal surface of a sphere by the first eigenfunctions :

- Clifford torus : $h_{c l}: \mathbb{R}^{2} / \mathbb{Z}^{2} \hookrightarrow \mathbb{S}^{3}$, with

$$
h_{c l}(x, y)=\frac{1}{\sqrt{2}}\left(e^{2 i \pi x}, e^{2 i \pi y}\right)
$$

- Equilateral torus : $h_{e q}: \mathbb{R}^{2} / \mathbb{Z}(1,0) \oplus \mathbb{Z}\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right) \hookrightarrow$ \mathbb{S}^{5}, with
$h_{e q}(x, y)=\frac{1}{\sqrt{3}}\left(e^{4 i \pi y / \sqrt{3}}, e^{2 i \pi(x-y / \sqrt{3})}, e^{2 i \pi(x+y / \sqrt{3})}\right)$.
Consequently, the corresponding flat metrics $g_{c l}$ et $g_{e q}$ are, up to dilatations, the only critical metrics of λ_{1} on the torus \mathbb{T}^{2}.

Consequence :

$$
\wedge\left(\mathbb{T}^{2}\right)=\lambda_{1}\left(\mathbb{T}^{2}, g_{e q}\right) A\left(\mathbb{T}^{2}, g_{e q}\right)=\frac{8 \pi^{2}}{\sqrt{3}}
$$

and $g_{e q}$ is the only maximizer.

What about the Klein bottle K ?

To every $a>0$, we associate the rectangular lattice $\Gamma_{a}=\mathbb{Z}(2 \pi, 0) \oplus \mathbb{Z}(0, a) \subset \mathbb{R}^{2}$ and denote by \tilde{g}_{a} the induced flat metric on the torus $\mathbb{T}_{a}^{2} \simeq \mathbb{R}^{2} / \Gamma_{a}$. The Klein bottle \mathbf{K} is diffeomorphic to the quotient of \mathbb{T}_{a}^{2} by the involution $s:(x, y) \mapsto(x+\pi,-y)$. We denote by g_{a} the flat metric induced on \mathbf{K} from the covering $\left(\mathbb{T}_{a}^{2}, \tilde{g}_{a}\right) \rightarrow \mathbf{K}$.
Any Riemannian metric on \mathbf{K} is conformal to one of the metrics g_{a}.

If $g=f g_{a}$ is a critical metric on \mathbf{K}, then

$$
\operatorname{Isom}\left(\mathbf{K}, g_{a}\right) \subset \operatorname{Isom}(\mathbf{K}, g) .
$$

The group Isom $\left(\mathbf{K}, g_{a}\right)$ contains the \mathbb{S}^{1}-action

$$
(x, y) \mapsto(x+t, y), \quad t \in[0, \pi] .
$$

Therefore, f does not depend on the variable x.

Consider a metric $g=f(y) g_{a}$. The Laplacian Δ_{g} can be identified with the operator $-\frac{1}{f(y)}\left(\partial_{x}^{2}+\partial_{y}^{2}\right)$ acting on Γ_{a}-periodic and s-invariant functions of \mathbb{R}^{2}. Separating variables, the eigenspaces are generated by functions of the form $\varphi_{k}(y) \cos k x$ and $\varphi_{k}(y) \sin k x$ where, $\forall k, \varphi_{k}$ is periodic of period $a, \varphi_{k}(-y)=$ $(-1)^{k} \varphi_{k}(y)$ et

$$
\varphi_{k}^{\prime \prime}=\left(k^{2}-\lambda f\right) \varphi_{k}
$$

for some $\lambda>0$.

Since a first eigenfunction has exactly two nodal domains (Courant), the first eigenspace is generated by :
$\varphi_{0}(y), \varphi_{1}(y) \cos x, \varphi_{1}(y) \sin x$,
$\varphi_{2}(y) \cos 2 x, \varphi_{2}(y) \sin 2 x$.
with, unless they are identically zero,

- φ_{0} and φ_{1} admit exactly two zeros in $[0, a)$,
- φ_{2} does not vanish in [0,a).

Now, we look for an isometric immersion $h=$ $\left(h_{1}, \cdots, h_{d}\right):\left(\mathbf{K}, f(y) g_{a}\right) \rightarrow \mathbb{S}^{d-1}(r)$ by the first eigenfunctions. Without lack of generality, one may assume that $r=1$ and that h_{1}, \cdots, h_{d} are linearly independent, hence $d=$ 4 ou 5.
$d=4$: There exists $\rho \in O(4)$ s. t.

$$
\rho \circ h=\left(\varphi_{1}(y) e^{i x}, \varphi_{2}(y) e^{2 i x}\right),
$$

with

$$
\varphi_{1}^{2}+\varphi_{2}^{2}=1
$$

and, since h is isometric, $\left|\partial_{y} h\right|^{2}=\left|\partial_{x} h\right|^{2}=f$, which means

$$
\varphi_{1}^{\prime 2}+\varphi_{2}^{\prime 2}=\varphi_{1}^{2}+4 \varphi_{2}^{2}=f .
$$

But this contradicts $\varphi_{1}^{2}+\varphi_{2}^{2}=1$ which tells us that φ_{1} achieves its max at the same point(s) where φ_{2} achieves its min, and reciprocally.

Therefore, $d=5$ and there exists $\rho \in O$ (5) s.t.

$$
\rho \circ h=\left(\varphi_{0}(y), \varphi_{1}(y) e^{i x}, \varphi_{2}(y) e^{2 i x}\right)
$$

with

$$
\varphi_{0}^{2}+\varphi_{1}^{2}+\varphi_{2}^{2}=1
$$

and

$$
\varphi^{\prime 2}+\varphi_{0}^{\prime 2}+\varphi^{\prime 2}=\varphi_{1}^{2}+4 \varphi_{2}^{2}=f
$$

In particular, φ_{1} and φ_{2} are solutions of the system

$$
\left\{\begin{aligned}
\varphi_{1}^{\prime \prime} & =\left(1-2 \varphi_{1}^{2}-8 \varphi_{2}^{2}\right) \varphi_{1} \\
\varphi_{2}^{\prime \prime} & =\left(4-2 \varphi_{1}^{2}-8 \varphi_{2}^{2}\right) \varphi_{2}
\end{aligned}\right.
$$

Proposition Let $a>0$ and f a positive periodic function of period a. the following are equivalent:
(I) The metric $g=f(y) g_{a}$ on \mathbf{K} is critical for λ_{1} on $\mathcal{R}(\mathbf{K})$.
(II) There exists a homothetic minimal immersion $h:(\mathbf{K}, \mathbf{g}) \rightarrow \mathbb{S}^{\mathbf{d}-1}$ by the first eigenfunctions of Δ_{g}.
(III) f is proportional to $\varphi_{1}^{2}+4 \varphi_{2}^{2}$, where φ_{1} and φ_{2} are two periodic functions of period a such that:
(a)

$$
\left\{\begin{array}{l}
\varphi_{1}^{\prime \prime}=\left(1-2 \varphi_{1}^{2}-8 \varphi_{2}^{2}\right) \varphi_{1} \\
\varphi_{2}^{\prime \prime}=\left(4-2 \varphi_{1}^{2}-8 \varphi_{2}^{2}\right) \varphi_{2}
\end{array}\right.
$$

(b) φ_{1} is odd, φ_{2} is even and $\varphi_{1}^{\prime}(0)=2 \varphi_{2}(0)$;
(c) φ_{1} has exactly two zeros in a period and φ_{2} is positive everywhere ;
(d) $\varphi_{1}^{2}+\varphi_{2}^{2} \leq 1$ where the equality holds at exactly two points in a period.

The problem reduces to the study of the system

$$
\left\{\begin{array}{l}
\varphi_{1}^{\prime \prime}=\left(1-2 \varphi_{1}^{2}-8 \varphi_{2}^{2}\right) \varphi_{1} \tag{3}\\
\varphi_{2}^{\prime \prime}=\left(4-2 \varphi_{1}^{2}-8 \varphi_{2}^{2}\right) \varphi_{2}
\end{array}\right.
$$

with the initial conditions (Condition (b))

$$
\left\{\begin{array}{l}
\varphi_{1}(0)=0, \quad \varphi_{2}(0)=p \tag{4}\\
\varphi_{1}^{\prime}(0)=2 p, \quad \varphi_{2}^{\prime}(0)=0
\end{array}\right.
$$

où $p \in(0,1]$ (Condition (d)).
One has to determine the value(s) of p for which the system admits a periodic solution $\left(\varphi_{1}, \varphi_{2}\right)$ satisfying (Condition (c)) :
$\left\{\begin{array}{l}\varphi_{1} \text { has two zeros in a period, } \\ \varphi_{2} \text { is positive everywhere. }\end{array}\right.$

Jakobson, Nadirashvili et Polterovich (2003) : For $p=\sqrt{3 / 8}$, the solution of (3)-(4) is periodic and satisfies (5). The corresponding critical metric g_{0} of λ_{1} on $\mathcal{R}(\mathbf{K})$ is given by :
$g_{0}=\frac{9+\left(1+8 \cos ^{2} v\right)^{2}}{1+8 \cos ^{2} v}\left(d u^{2}+\frac{d v^{2}}{1+8 \cos ^{2} v}\right)$
$0 \leq u<\frac{\pi}{2}, 0 \leq v<\pi$.

El Soufi-Giacomini-Jazar (2005) : Let (φ_{1}, φ_{2}) the solution of (3)-(4).

1. $\forall p \in(0,1], p \neq \sqrt{3} / 2,\left(\varphi_{1}, \varphi_{2}\right)$ is either périodic or quasi-periodic.
2. For $p=\frac{\sqrt{3}}{2},\left(\varphi_{1}, \varphi_{2}\right)$ tends to the origin as $y \rightarrow \infty$ (hence, it is neither periodic nor quasi-periodic).
3. For all $p \in(\sqrt{3} / 2,1], \varphi_{2}$ vanishes at least once in each period. Hence, Condition (5) is not satisfied.
4. There exists a countable dense subset $\mathcal{P} \subset(0, \sqrt{3} / 2)$, with $\sqrt{3 / 8} \in \mathcal{P}$, such that the solution $\left(\varphi_{1}, \varphi_{2}\right)$ corresponding to $p \in$ ($0, \sqrt{3} / 2$) is periodic if and only if $p \in \mathcal{P}$.
5. For $p=\sqrt{3 / 8},\left(\varphi_{1}, \varphi_{2}\right)$ satisfies (5) and, for any $p \in \mathcal{P}, p \neq \sqrt{3 / 8}, \varphi_{1}$ admits at least 6 zeros in a period.
Conclusion: The initial value $p=\sqrt{3 / 8}$ is the only one to correspond to a periodic solution satisfying (5). Therefore, the metric g_{0} is, up to dilatations, the unique critical metric of λ_{1} on \mathbf{K}.

With the existence result of Nadirashvili, we deduce the following

Corollary

$$
\wedge(\mathbf{K})=\lambda_{1}\left(\mathbf{K}, g_{0}\right) A\left(\mathbf{K}, g_{0}\right)=12 \pi E\left(\frac{2 \sqrt{2}}{3}\right),
$$

where E is the complete elliptic integral of the second kind $(\wedge(K) \approx 13,365 \pi)$.
Moreover, the metric g_{0} is, up to dilatations, the only maximizing metric.

The immersion of the klein bottle (K, g_{0}) as a minimal surface of \mathbb{S}^{4} coincide with the bipolar surface of the Lawson's minimal torus $\tau_{3,1}$ defined in \mathbb{S}^{3} by

$$
(u, v) \mapsto(\cos v \exp (3 i u), \sin v \exp (i u)) .
$$

