The 2nd School & Conference on Noncommutative Geometry, April 19-30, 2009, IPM, Tehran

Discrete groups, von Neumann Algebras and Noncommutative Geometry

(4 Lectures)

A. B. Thom Georg-August University Germany

I am planning to give 5 lectures about various topics in the context of *Discrete groups, von Neumann algebras and non-commutative geometry.* After starting with elementary definitions, I will cover different applications of non-commutative geometry to an understanding of the structure of group rings and group C^* -algebras.

1. The classification of von Neumann algebras

If first want to recall basic definitions and give various sources of examples of von Neumann algebras. Later I will sketch a first classification (due to von Neumann himself) of von Neumann algebra factors into types. A special emphasize lies on group von Neumann algebras and von Neumann algebras that appear in algebraic quantum field theory.

2. KMS-states and Tomita-Takesaki theory

KMS-states appear naturally as equillibrium states in the presence of a time evolution in the algebra of observables of a physical system. We will study KMS-states from a mathematical point of view and explain the theory of Tomita-Takesaki. One consequence is that every faithful state on a von Neumann algebra is the KMS-state with respect to a naturally associated time evolution.

3. Fredholm-modules and projections in group C^* -algebras

In the context of non-commutative geometry, index theory and geometry are linked through the concept of a Fredholm module. We want to explain this notion and give natural examples in the context of group algebras. We will also sketch the proof (following Connes) of non-existence of projections in the full and reduced group C^* -algebra of a free group. I will also mention Zalesski's theorem about the trace of an idempotent in a group ring.

4. The non-zero divisor conjecture and related conjectures

An important conjecture about the complex group ring of a discrete torsionfree group is the absence of zero-divisors. I will indicate (following work of Linnell) how Fredholm modules can be used to prove this conjecture in the case of free groups. A related conjecture about the finiteness of group rings is also discussed and I will explain (following Elek-Szabo) how one can prove this conjecture for sofic groups.

5. Dimension theory over finite von Neumann algebras

One of the advantages of finite von Neumann algebras is that they allow for a numerical dimension of modules. We introduce this dimension function and state various results about it, ranging from the theory of subfactors, ergodic theory to the theory of ℓ^2 -invariants of discrete groups. In this talk I will also explain joint work with Jesse Peterson (Vanderbilt). We obtained strong information about the structure of large classes of discrete groups. The relevant invariant is the first ℓ^2 -Betti number of the group.