Optimal Crossover Designs
 for Comparing Test Treatments to a Control Treatment When Subject Effects are Random

A.S. Hedayat and Wei Zheng

Department of Mathematics, Statistics, and Computer Science University of Illinois at Chicago

Outline

- A Taste of Optimal Designs
- Motivation from Statistics
- Background
- Results
- Construction of Optimal Designs
- Characteristics of Optimal Designs
- Guidelines for Construction
- Methods of Constructions
- Further Problems

A design as a mapping

1	2	3	0	0	2	0	3	2	1
0	3	0	1	4	0	1	2	3	4
2	0	3	3	0	4	4	2	4	0

$d:(k, u) \mapsto i$ where $1 \leq k \leq p, 1 \leq u \leq n$ and $0 \leq i \leq t$ In this example, $n=10, p=3, t=4$.

What's special about these two designs?

$$
\begin{aligned}
& 000231231 \\
& 123000123 \\
& 231123000 \\
& 132320130210 \\
& 213203301102 \\
& 000111222333
\end{aligned}
$$

Notations

- $n_{\text {diu }}=\sum_{k=1}^{p} I_{[d(k, u)=i]}$.
- $\tilde{n}_{\text {diu }}=\sum_{k=1}^{p-1} I_{[d(k, u)=i]}$.
- $I_{d i k}=\sum_{u=1}^{n} I_{[d(k, u)=i]}$.
- $m_{d i j}=\sum_{u=1}^{n} \sum_{k=1}^{p-1} I_{[d(k, u)=i, d(k+1, u)=j]}$.
- $r_{d i}=\sum_{u=1}^{n} \sum_{k=1}^{p} I_{[d(k, u)=i]}$.
- $\tilde{r}_{d i}=\sum_{u=1}^{n} \sum_{k=1}^{p-1} I_{[d(k, u)=i]}$.

In general, we need...

A design d is saided to be a totally balanced test-control incomplete crossover design (TBTCI) if:
(1) Each element from $\{1,2, \ldots, t\}$ show up in each column at most once.
(2) Each element from $\{0,1, \ldots, t\}$ is equally replicated in each row.
(3) $\left|n_{d 0 u}-n_{d 0 v}\right| \leq 1$ and $\left|\tilde{n}_{d 0 u}-\tilde{n}_{d 0 v}\right| \leq 1$ for all $1 \leq u, v \leq n$.
(9) $m_{d 0 i}, m_{d i 0}$ and $m_{d i j}$ are constants across all $1 \leq i \neq j \leq t$ and $m_{\text {dii }}=0$ for all $0 \leq i \leq t$.
(0) $r_{d i}$ and $\tilde{r}_{d i}$ are constants across all $1 \leq i \leq t$.
(0) $\sum_{u=1}^{n} n_{d 0 u} n_{d i u}, \sum_{u=1}^{n} n_{d i u} n_{d j u}, \sum_{u=1}^{n} \tilde{n}_{d 0 u} \tilde{n}_{d i u}, \sum_{u=1}^{n} \tilde{n}_{d i u} \tilde{n}_{d j u}$, $\sum_{u=1}^{n} n_{d 0 u} \tilde{n}_{d i u}, \sum_{u=1}^{n} \tilde{n}_{d 0 u} n_{d i u}$, and $\sum_{u=1}^{n} n_{d i u} \tilde{n}_{d j u}$, are constants across all $1 \leq i \neq j \leq t$.

Let $N_{d}=\left(n_{\text {diu }}\right)$ and $\tilde{N}_{d}=\left(\tilde{n}_{\text {diu }}\right)$ when $0 \leq i \leq t$ and $1 \leq u \leq n$.
Conditions 5 and 6 are equivalent to

$$
\begin{align*}
& N_{d} N_{d}^{\prime}=\left(\begin{array}{cc}
a_{1} & b_{1} 1_{t}^{\prime} \\
b_{1} 1_{t} & \left(e_{1}-f_{1}\right) I_{t}+f_{1} J_{t}
\end{array}\right) \tag{1}\\
& N_{d} \tilde{N}_{d}^{\prime}=\left(\begin{array}{cc}
a_{2} & b_{2} 1_{t}^{\prime} \\
c_{2} 1_{t} & \left(e_{2}-f_{2}\right) I_{t}+f_{2} J_{t}
\end{array}\right) \tag{2}\\
& \tilde{N}_{d} \tilde{N}_{d}^{\prime}=\left(\begin{array}{cc}
a_{3} & b_{3} 1_{t}^{\prime} \\
b_{3} 1_{t} & \left(e_{3}-f_{3}\right) I_{t}+f_{3} J_{t}
\end{array}\right) \tag{3}
\end{align*}
$$

$a_{1}=\sum_{u=1}^{n} n_{d 0 u}^{2}$
$b_{1}=\sum_{u=1}^{n=1} n_{d 0 u} n_{d 1 u}$ $e_{1}=\sum_{u=1}^{n} n_{d 1 u}^{2}$

$$
f_{1}=\sum_{u=1}^{n} n_{d 1 u} n_{d 2 u}
$$

$$
\begin{array}{ll}
a_{2}=\sum_{u=1}^{n} n_{d 0 u} \tilde{n}_{d 0 u} & a_{3}=\sum_{u=1}^{n} \tilde{n}_{d 0 u}^{2} \\
b_{2}=\sum_{u=1}^{n} n_{d 0 u} \tilde{n}_{d 1 u} & b_{3}=\sum_{u=1}^{n=1} \tilde{n}_{d 0 u} \tilde{n}_{d 1 u} \\
c_{2}=\sum_{u=1}^{n} \tilde{n}_{d 0 u} n_{d 1 u} & e_{3}=\sum_{u=1}^{n} \tilde{n}_{d 1 u}^{2} \\
e_{2}=\sum_{u=1}^{n} n_{d 1 u} \tilde{n}_{d 1 u} & f_{3}=\sum_{u=1}^{n=1} \tilde{n}_{d 1 u} \tilde{n}_{d 2 u} \\
f_{2}=\sum_{u=1}^{n} n_{d 1 u} \tilde{n}_{d 2 u} &
\end{array}
$$

Definition

A $p \times n$ array with symbols from $\{0,1,2, \ldots, t\}$ is said to be a crossover design if columns represent subjects, rows represent periods and symbols represent treatments.

- Our goal

Compare the test treatments, $\{1,2, \ldots, t\}$, with the control treatment \{0\}.

- Important notations
- n : number of subjects/units/patients
- p : number of periods
- t : number of test treatments
- $r_{d 0}$: replications of the control treatment in design d.

An Example

d: | 1 | 2 | 3 | 0 | 0 | 2 | 0 | 3 | 2 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 3 | 0 | 1 | 4 | 0 | 1 | 2 | 3 | 4 |
| 2 | 0 | 3 | 3 | 0 | 4 | 4 | 2 | 4 | 0 |

An Example

$$
\begin{aligned}
& \mathrm{d}: \begin{array}{rrrrrrrrrr}
1 & 2 & 3 & 0 & 0 & 2 & 0 & 3 & 2 & 1 \\
0 & 3 & 0 & 1 & 4 & 0 & 1 & 2 & 3 & 4 \\
2 & 0 & 3 & 3 & 0 & 4 & 4 & 2 & 4 & 0 \\
\\
n=10, & p=3, & t=4 & r_{d 0}=9
\end{array} .
\end{aligned}
$$

An Example

$$
\begin{array}{lllllllllll}
\mathrm{d}: & \begin{array}{rrrrrrrr}
1 & 2 & 3 & 0 & 0 & 2 & 0 & 3 \\
2 & 1 \\
& 3 & 0 & 1 & 4 & 0 & 1 & 2
\end{array} & 3 & 4 \\
2 & 0 & 3 & 3 & 0 & 4 & 4 & 2 & 4 & 0 \\
\\
n=10, & p=3, & t=4 & r_{d 0}=9
\end{array}
$$

- n could be hundreds or thousands depending on the study.
- p is usually not large due to ethic or other issues.
- t is not large either; we will inverstigate $t+1 \geq p \geq 3$.

An Example

$$
\begin{aligned}
\mathrm{d}: & \begin{array}{llllllllll}
1 & 2 & 3 & 0 & 0 & 2 & 0 & 3 & 2 & 1 \\
0 & 3 & 0 & 1 & 4 & 0 & 1 & 2 & 3 & 4 \\
2 & 0 & 3 & 3 & 0 & 4 & 4 & 2 & 4 & 0 \\
\\
n=10, & p=3, & t=4 & r_{d 0}=9
\end{array}
\end{aligned}
$$

- n could be hundreds or thousands depending on the study.
- p is usually not large due to ethic or other issues.
- t is not large either; we will inverstigate $t+1 \geq p \geq 3$.
- \# of designs (identical up to an isomorphism):
$\frac{(N+n-1)!}{t!n!(N-1)!} \geq \frac{1}{t!(N-1)!} n^{N-1}, N=(t+1)^{p}$.
- Isomorphism: in the sense of relabling the subjects and test treatments.

Model

$$
\begin{align*}
& Y_{d k u}=\mu+\alpha_{k}+\beta_{u}+\tau_{d(k, u)}+\gamma_{d(k-1, u)}+\epsilon_{k u} \tag{4}\\
& \beta_{u} \text { iid } N\left(0, \sigma_{\beta}^{2}\right), \quad \epsilon_{k u} \text { iid } N\left(0, \sigma^{2}\right), \quad \beta_{u} \Perp \epsilon_{k u}
\end{align*}
$$

- $Y_{d k u}$: Response from unit (subject) u in period k in design d.
- α_{k} : Effect of period k.
- β_{u} : Effect of subject u.
- $d(k, u)$: Treatment specified by the design d for unit u in period k. (Control $\{0\}$; Test $\{1,2, \ldots t\}$)
- τ_{i} : Direct effect of treatment i
- γ_{i} : Carryover effect of treatment i (by convention $\gamma_{d(0, u)}=0$)

Model (In Matrix Form)

$$
\begin{align*}
E\left(\mathbf{Y}_{d}\right) & =1_{n p} \mu+P \boldsymbol{\alpha}+T_{d} \boldsymbol{\tau}+F_{d} \gamma \\
\operatorname{var}\left(\mathbf{Y}_{d}\right) & =\sigma^{2}\left(I_{n} \otimes\left(I_{p}+\theta J_{p}\right)\right) \tag{5}
\end{align*}
$$

Where

- $\theta=\sigma_{\beta}^{2} / \sigma^{2}$.
- $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{p}\right)^{\prime}, \boldsymbol{\tau}=\left(\tau_{0}, \ldots \tau_{t}\right)^{\prime}, \gamma=\left(\gamma_{0}, \ldots, \gamma_{t}\right)^{\prime}$.
- $P=1_{n} \otimes I_{p}$.
- T_{d} and F_{d} denote the treatment and carryover incidence matrices.
- \otimes denote the Kronecker product.

The information matrix C_{d} for $\boldsymbol{\tau}$ is

$$
\begin{equation*}
C_{d}=T_{d}^{\prime} V^{-1 / 2} p r^{\perp}\left(V^{-1 / 2}\left[1_{n p}|P| F_{d}\right]\right) V^{-1 / 2} T_{d} \tag{6}
\end{equation*}
$$

where $V=I_{n} \otimes\left(I_{p}+\theta J_{p}\right)$ which depends on θ only, and $p r^{\perp} A=I-A\left(A^{\prime} A\right)^{-} A^{\prime}$ is a projection.

- If $\theta=\infty$ (Hedayat and Yang (2005))
C_{d} becomes the information matrix for the model with fixed subject effects (β_{u} is nonrandom.)
- If $\theta=0$
C_{d} becomes the information matrix for the model without subject effects ($\beta_{u} \equiv 0$)

The information matrix for $\left(\tau_{1}-\tau_{0}, \tau_{2}-\tau_{0}, \ldots, \tau_{t}-\tau_{0}\right)^{\prime}$ is

$$
\begin{equation*}
M_{d}=T^{\prime} C_{d} T \quad \text { where } \quad T=\binom{0_{1 \times t}}{I_{t \times t}} \tag{7}
\end{equation*}
$$

Thus, M_{d} can be simply obtained from C_{d} by deleting the first row and the first column of C_{d}.

- A-Optimal: $\min _{d} \sum_{i=1}^{t} \operatorname{Var}\left(\widehat{\tau_{i}-\tau_{0}}\right)$ (i.e. $\min _{d} \operatorname{Tr}\left(M_{d}^{-1}\right)$)

The information matrix for $\left(\tau_{1}-\tau_{0}, \tau_{2}-\tau_{0}, \ldots, \tau_{t}-\tau_{0}\right)^{\prime}$ is

$$
\begin{equation*}
M_{d}=T^{\prime} C_{d} T \quad \text { where } \quad T=\binom{0_{1 \times t}}{I_{t \times t}} \tag{7}
\end{equation*}
$$

Thus, M_{d} can be simply obtained from C_{d} by deleting the first row and the first column of C_{d}.

- A-Optimal: $\min _{d} \sum_{i=1}^{t} \operatorname{Var}\left(\widehat{\tau_{i}-\tau_{0}}\right)$ (i.e. $\min _{d} \operatorname{Tr}\left(M_{d}^{-1}\right)$)
- MV-Optimal: $\min _{d} \max _{1 \leq i \leq t} \operatorname{Var}\left(\widehat{\tau_{i}-\tau_{0}}\right)$

Lemma

An A-optimal design is also an MV-optimal design if its information matrix, M_{d}, is a completely symmetric matrix.

How to find $d^{*}=\operatorname{argmin}_{d} \operatorname{Tr}\left(M_{d}^{-1}\right)$

$\operatorname{Tr}\left(M_{d}^{-1}\right) \geq B_{1}(d) \geq B_{2}(d) \geq B_{3}(d) \ldots \geq B_{m}(d) \geq B_{0}$
(1) $B_{i}, i \geq 1$ are functions of $d ; B_{0}$ is a constant depending on n, p, t, θ.
(2) Each inequality should hold for every competing design d.
(3) There should exist a design d^{*} with all the equalities hold, i.e.

$$
\operatorname{Tr}\left(M_{d^{*}}^{-1}\right)=B_{0}
$$

Then we have $\operatorname{Tr}\left(M_{d}^{-1}\right) \geq \operatorname{Tr}\left(M_{d^{*}}^{-1}\right)$.
Note that $\operatorname{Tr}\left(M_{d}^{-1}\right)$ is essentially a complicated function of the variables $n_{d i u}, \tilde{n}_{d i u}, l_{d i k}, m_{d i j}, r_{d i}$ and $\tilde{r}_{d i}$ for $0 \leq i \neq j \leq t$ and $1 \leq k \leq p$.

The first step:

$$
\begin{align*}
C_{d}= & T_{d}^{\prime} V^{-1 / 2} p r^{\perp}\left(V^{-1 / 2}\left[1_{n p}|P| F_{d}\right]\right) V^{-1 / 2} T_{d} \\
\leq & T_{d}^{\prime} V^{-1 / 2} p r^{\perp}\left(1_{n p} \mid V^{-1 / 2} F_{d}\right) V^{-1 / 2} T_{d} \tag{8}\\
= & T_{d}^{\prime} V^{-1 / 2} p r^{\perp}\left(1_{n p}\right) V^{-1 / 2} T_{d} \tag{9}\\
& -T_{d}^{\prime} V^{-1 / 2} p \vdash^{\perp}\left(1_{n p}\right) V^{-1 / 2} F_{d} \\
& \times\left(F_{d}^{\prime} V^{-1 / 2} p r^{\perp}\left(1_{n p}\right) V^{-1 / 2} F_{d}\right)^{-} \\
& \times F_{d}^{\prime} V^{-1 / 2} p r^{\perp}\left(1_{n p}\right) V^{-1 / 2} T_{d}
\end{align*}
$$

In (8), $A \leq B$ means $B-A$ is n.n.d. and the equality holds when $l_{\text {dik }}=r_{\text {di }} / p, i=0,1, \ldots, t$
Note that the matrix under the operator $p r^{\perp}$ becomes easy to evaluate. The equality (9) uses the following fact:
$p r^{\perp}([A \mid B])=p r^{\perp}(A)-p r^{\perp}(A) B\left(B^{\prime} p r^{\perp}(A) B\right) B^{\prime} p r^{\perp}(A)$

A middle step: $\operatorname{Tr}\left(M_{d}^{-1}\right) \geq \frac{t(t-1)^{2}}{x_{0}}+\frac{t}{y_{0}}$ where $x_{0}=\alpha-\frac{\beta^{2}}{\gamma}$ with

$$
\alpha=\frac{1+\theta p-\theta}{1+\theta p}\left(t n p-t r_{d 0}\right)-\frac{t \sum_{i=1}^{t} r_{d i}^{2}-r_{d 0}^{2}}{(1+\theta p) p n}-r_{d 0}+\frac{\theta \sum_{u=1}^{n} n_{d 0 u}^{2}}{1+\theta p}
$$

$$
\beta=t \sum_{i=1}^{t} m_{d i i}+\frac{r_{d 0}}{p}-I_{d 01}-m_{d 00}-\frac{\theta t}{1+\theta p} \sum_{i=1}^{t} \sum_{u=1}^{n} n_{d i u} \tilde{n}_{d i u}
$$

$$
-\frac{t}{(1+\theta p) p n} \sum_{i=1}^{t} r_{d i} \tilde{r}_{d i}+\frac{\theta}{1+\theta p} \sum_{u=1}^{n} n_{d 0 u} \tilde{n}_{d 0 u}+\frac{r_{d 0} \tilde{r}_{d 0}}{(1+\theta p) p n}
$$

$$
\gamma=\left(t+1-\frac{2}{p}-\frac{\theta t}{1+\theta p}\right)\left(n(p-1)-\tilde{r}_{d 0}\right)-\frac{n}{p}(p-1)^{2}-\frac{t}{(1+\theta p) p n} \sum_{i=1}^{t} \tilde{r}_{d i}^{2}
$$

$$
+\frac{\tilde{r}_{d 0}^{2}}{(1+\theta p) p n}+\frac{\theta}{1+\theta p} \sum_{u=1}^{n} \tilde{n}_{d 0 u}^{2}
$$

and

$$
\begin{aligned}
y_{0} & =\left(r_{d 0}-\frac{\theta}{1+\theta p} \sum_{u=1}^{n} n_{d 0 u}^{2}-\frac{r_{d 0}^{2}}{(1+\theta p) p n}\right) \\
& -\left\{\left(n(p-1)-\tilde{r}_{d 0}\right)\left(m_{d 00}-\frac{\theta}{1+\theta p} \sum_{u=1}^{n} n_{d 0 u} \tilde{n}_{d 0 u}-\frac{1}{(1+\theta p) p n} r_{d 0} \tilde{r}_{d 0}\right)^{2}\right. \\
& \left.+\tilde{r}_{d 0}\left(\frac{r_{d 0}}{p}-l_{d 01}-m_{d 00}+\frac{\theta}{1+\theta p} \sum_{u=1}^{n} n_{d 0 u} \tilde{n}_{d 0 u}+\frac{1}{(1+\theta p) p n} r_{d 0} \tilde{r}_{d 0}\right)^{2}\right\} \\
& \times\left\{n(p-1)\left(\tilde{r}_{d 0}-\frac{\theta}{1+\theta p} \sum_{u=1}^{n} \tilde{n}_{d 0 u}^{2}-\frac{\tilde{r}_{d 0}^{2}}{(1+\theta p) p n}\right)-\frac{\tilde{r}_{d 0}^{2}}{p}\right\}^{-1} .
\end{aligned}
$$

- $\Omega_{n, p, t}$: The collection of all the designs with the number of subjects n, number of periods p, number of test treatments t.
- $\Lambda_{n, p, t}$: A subclass of $\Omega_{n, p, t}$ with the restrictions that the control treatment is equally replicated in each period and no treatment is immediately preceded by itself. ($l_{d 0 k}=r_{d 0} / p$ and $m_{d i i}=0$ for all $1 \leq k \leq p$ and $0 \leq i \leq t)$
- $\Omega_{n, p, t}$: The collection of all the designs with the number of subjects n, number of periods p, number of test treatments t.
- $\Lambda_{n, p, t}$: A subclass of $\Omega_{n, p, t}$ with the restrictions that the control treatment is equally replicated in each period and no treatment is immediately preceded by itself. ($l_{d 0 k}=r_{d 0} / p$ and $m_{d i i}=0$ for all $1 \leq k \leq p$ and $0 \leq i \leq t)$

Lemma

When $t \geq 3$ and $t+1 \geq p \geq 3, \operatorname{Tr}\left(M_{d}^{-1}\right) \geq B_{m}(d)=f\left(n, p, t, r_{d 0}, \theta\right)$ for all designs in $\Lambda_{n, p, t}$. The equality is obtained by a design in a form of TBTCI. When $p=3, t=2$, the conclusion still holds but only within a subclass of $\Lambda_{n, p, t}$ in which $r_{d 0} / n \geq 0.6306$.

- $\Omega_{n, p, t}$: The collection of all the designs with the number of subjects n, number of periods p, number of test treatments t.
- $\Lambda_{n, p, t}$: A subclass of $\Omega_{n, p, t}$ with the restrictions that the control treatment is equally replicated in each period and no treatment is immediately preceded by itself. ($I_{d 0 k}=r_{d 0} / p$ and $m_{d i i}=0$ for all $1 \leq k \leq p$ and $0 \leq i \leq t)$

Lemma

When $t \geq 3$ and $t+1 \geq p \geq 3, \operatorname{Tr}\left(M_{d}^{-1}\right) \geq B_{m}(d)=f\left(n, p, t, r_{d 0}, \theta\right)$ for all designs in $\Lambda_{n, p, t}$. The equality is obtained by a design in a form of TBTCI. When $p=3, t=2$, the conclusion still holds but only within a subclass of $\Lambda_{n, p, t}$ in which $r_{d 0} / n \geq 0.6306$.

There is no closed form for $\operatorname{argmin}_{r} f(n, p, t, r, \theta)$.
$f\left(n, p, t, r_{d 0}, \theta\right)=t(t-1)^{2} / \tilde{x}_{0}+t / \tilde{y}_{0}$ where \tilde{x}_{0} and \tilde{y}_{0} are derived from x_{0} and y_{0} by replacing all of the variables therein related to d with functions of $r_{d 0}$.

Theorem

When $t \geq 3$ and $t+1 \geq p \geq 3$, a design d^{*} is optimal among designs in $\Lambda_{n, p, t}$ if it is a TBTCI and $r_{d^{*} 0}$ minimizes $f\left(n, p, t, r_{d 0}, \theta\right)$ given n, p, t, θ. When $p=3, t=2$, the design d^{*} is optimal in the same sense as in the lemma.

Remark: Similar results can be found in Hedayat and Yang (2005) when $\theta=\infty$. We extend the result for any value of $\theta \geq 0$.

Examples of TBTCI designs

- $\operatorname{TBTCI}(9,3,3,9)$

$$
\begin{array}{lllllllll}
0 & 0 & 0 & 2 & 3 & 1 & 2 & 3 & 1 \\
1 & 2 & 3 & 0 & 0 & 0 & 1 & 2 & 3 \\
2 & 3 & 1 & 1 & 2 & 3 & 0 & 0 & 0
\end{array}
$$

- TBTCI(12, 3, 3, 9)

$$
\begin{array}{llllllllllll}
1 & 3 & 2 & 3 & 2 & 0 & 1 & 3 & 0 & 2 & 1 & 0 \\
2 & 1 & 3 & 2 & 0 & 3 & 3 & 0 & 1 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & 1 & 1 & 2 & 2 & 2 & 3 & 3 & 3
\end{array}
$$

Remark: $\operatorname{TBTCI}\left(n, p, t, r_{d 0}\right)$ denotes a TBTCI with n units, p periods, t test treatments and $r_{d 0}$ replications of the control treatment.

Graphical Description: $p=3$ and $t=4$

The optimal $r_{d * 0}$ as a function of n
in the sense of minimizing $f\left(n, p, t, r_{d 0}, \theta\right)$.

- $\theta \geq 0$ is unkown but predetermined.
- The curves correspond to $\theta=\infty$ and $\theta=0$.
- The bold line represents the equation $r_{d * 0}=n$.
- Whenever the curve for θ crosses the bold line, we have $r_{d * 0}=n$.
- $r_{d * 0}$ is slightly smaller than n in general.
- $r_{d^{*} 0}$ jumps by $p=3$ each time for any value of θ.

A Taste of Optimal Designs
Motivation from Statistics Construction of Optimal Designs

Further Problems

$p=3$ and $t=2,3, \ldots, 7$

A Taste of Optimal Designs

A Taste of Optimal Designs
Motivation from Statistics Construction of Optimal Designs

Further Problems

A Taste of Optimal Designs
Motivation from Statistics Construction of Optimal Designs

Further Problems

A Taste of Optimal Designs
Motivation from Statistics Construction of Optimal Designs

Further Problems

Revisit the Notations

- $n_{\text {diu }}=\sum_{k=1}^{p} I_{[d(k, u)=i]}$.
- $\tilde{n}_{\text {diu }}=\sum_{k=1}^{p-1} I_{[d(k, u)=i]}$.
- $I_{d i k}=\sum_{u=1}^{n} I_{[d(k, u)=i]}$.
- $m_{d i j}=\sum_{u=1}^{n} \sum_{k=1}^{p-1} I_{[d(k, u)=i, d(k+1, u)=j]}$.
- $r_{d i}=\sum_{u=1}^{n} \sum_{k=1}^{p} I_{[d(k, u)=i]}$.
- $\tilde{r}_{d i}=\sum_{u=1}^{n} \sum_{k=1}^{p-1} I_{[d(k, u)=i]}$.

Revisit the Definition

A design d is saided to be a totally balanced test-control incomplete crossover design (TBTCI) if:
(1) Each element from $\{1,2, \ldots, t\}$ show up in each column at most once.
(2) Each element from $\{0,1, \ldots, t\}$ is equally replicated in each row.
(3) $\left|n_{d 0 u}-n_{d 0 v}\right| \leq 1$ and $\left|\tilde{n}_{d 0 u}-\tilde{n}_{d 0 v}\right| \leq 1$ for all $1 \leq u, v \leq n$.
(1) $m_{d 0 i}, m_{d i 0}$ and $m_{d i j}$ are constants across all $1 \leq i \neq j \leq t$ and $m_{\text {dii }}=0$ for all $0 \leq i \leq t$.
(0) $r_{d i}$ and $\tilde{r}_{d i}$ are constants across all $1 \leq i \leq t$.
(0) $\sum_{u=1}^{n} n_{d 0 u} n_{d i u}, \sum_{u=1}^{n} n_{d i u} n_{d j u}, \sum_{u=1}^{n} \tilde{n}_{d 0 u} \tilde{n}_{d i u}, \sum_{u=1}^{n} \tilde{n}_{d i u} \tilde{n}_{d j u}$, $\sum_{u=1}^{n} n_{d 0 u} \tilde{n}_{d i u}, \sum_{u=1}^{n} \tilde{n}_{d 0 u} n_{d i u}$, and $\sum_{u=1}^{n} n_{d i u} \tilde{n}_{d j u}$, are constants across all $1 \leq i \neq j \leq t$.

Revisit (Continued)

Let $N_{d}=\left(n_{\text {diu }}\right)$ and $\tilde{N}_{d}=\left(\tilde{n}_{\text {diu }}\right)$ with the dimension of $0 \leq i \leq t$ and $1 \leq u \leq n$. Conditions 5 and 6 are equivalent to

$$
\begin{align*}
& N_{d} N_{d}^{\prime}=\left(\begin{array}{cc}
a_{1} & b_{1} 1_{t}^{\prime} \\
b_{1} 1_{t} & \left(d_{1}-e_{1}\right) I_{t}+e_{1} J_{t}
\end{array}\right) \tag{10}\\
& N_{d} \tilde{N}_{d}^{\prime}=\left(\begin{array}{cc}
a_{2} & b_{2} 1_{t}^{\prime} \\
c_{2} 1_{t} & \left(d_{2}-e_{2}\right) I_{t}+e_{2} J_{t}
\end{array}\right) \tag{11}\\
& \tilde{N}_{d} \tilde{N}_{d}^{\prime}=\left(\begin{array}{cc}
a_{3} & b_{3} 1_{t}^{\prime} \\
b_{3} 1_{t} & \left(d_{3}-e_{3}\right) I_{t}+e_{3} J_{t}
\end{array}\right) \tag{12}
\end{align*}
$$

For $r_{d 0}<n, p=3$

Definition

A type I orthogonal array $O A_{l}(n, k, s, t)$ is a $k \times n$ array based on s symbols, where the columns of any $t \times n$ subarray contains all $s!/(s-t)$! permutations of t distinct symbols.

Theorem

A type I orthogonal array $O A_{I}(t(t+1), 3, t+1,2)$ and a $\operatorname{TBTCI}(t(t+1), 3, t, 3 t)$ coexists.

Given an $O A_{l}(t(t+1), 3, t+1,2)$ with symbols from $\{0,1, \ldots, t\}$, label the rows as periods, columns as units and symbols as treatments, then by definition, this $O A_{I}$ is a $\operatorname{TBTCI}(t(t+1), 3, t, 3 t)$.

A Latin square of order $t+1$ with entries from $\{0,1,2, \ldots, t\}$, could be transformed into a $\operatorname{TBTCI}(t(t+1), 3, t, 3 t)$ as long as it has at least one transversal. For example:

$\longmapsto \operatorname{TBTCI}(20,3,4,12):$
Element: 43213402104342102301
Column: 12340234013401240123
Row: 00001111222233334444

Theorem

The juxtaposition of any finite collection of TBTCI's with the common number of periods and treatments would still be a TBTCI as long as we still have $\left|n_{d 0 u}-n_{d 0 v}\right| \leq 1$ and $\left|\tilde{n}_{d 0 u}-\tilde{n}_{d 0 v}\right| \leq 1$ where u and v are two different subjects in the resulting design.
$\operatorname{TBTCI}(36,3,4,36)$
\downarrow
$\operatorname{TBTCI}(180,3,4,180)$
+
$\operatorname{TBTCI}(20,3,4,12)$
$\|$
$\operatorname{TBTCI}(200,3,4,192)$

A Taste of Optimal Designs

$\lambda=\theta /(1+\theta)$.
$\operatorname{TBTCI}(180,3,4,180)$ vs $\operatorname{TBTCI}(200,3,4,192)$

A Taste of Optimal Designs

Characteristics of Optimal Designs Guidelines for Construction
Methods of Constructions

$\lambda=\theta /(1+\theta)$.
$\operatorname{TBTCI}(360,3,4,360)$ vs $\operatorname{TBTCI}(380,3,4,272)$

For $r_{d 0}<n, p \geq 4$

Starting from the special case of $p=5, t=4$, we have the following 4 mutually orthogonal Latin Squares:

	0	1	2	3	4		0	1	2	3	4
	1	2	3	4	0		3	4	0	1	2
L_{1} :	2	3	4	0	1	L_{3} :	1	2	3	4	0
	3	4	0	1	2		4	0	1	2	3
	4	0	1	2	3		2	3	4	0	1
	0	1	2	3	4		0	1	2	3	4
	2	3	4	0	1		4	0	1	2	3
L_{2} :	4	0	1	2	3	L_{4} :	3	4	0	1	2
	1	2	3	4	0		2	3	4	0	1
	3	4	0	1	2		1	2	3	4	0

Since L_{1}, L_{2} and L_{3} has the main diagonal as a common transversal, we rename the symbols to get the following:

	03	31	4	2	0	2	4	1	3	0	4	3	2	
3	31	14	2	0	4	1	3	0	2	2	1	0	4	
L_{1}^{\prime} : 1	14	42	0	3	3	0	2	4	1	4	3	2	1	0
4	4	20	3	1	2	4	1	3	0	1	0	4	3	2
2	2	03	1	4	1	3	0	2	4	3	2	1	0	

When we go through each entry except the main diagonal, we have $\operatorname{TBTCI}(20,5,4,20)$

$$
\begin{aligned}
& L_{1}^{\prime}: 31423420140342012031 \\
& L_{2}^{\prime}: 24134302304124101302 \\
& L_{3}^{\prime}: 43212043431010423210 \\
& \text { Column: } 12340234013401240123 \\
& \text { Row: } 00001111222233334444
\end{aligned}
$$

By selecting any 4 or 3 of the 5 rows of the $\operatorname{TBTCI}(20,5,4,20)$, we get $\operatorname{TBTCI}(20,4,4,16)$ or $\operatorname{TBTCI}(20,3,4,12)$ respectively.

Theorem

A type I orthogonal array $O A_{l}(t(t+1), p, t+1,2)$ and a $\operatorname{TBTCI}(t(t+1), p, t, p t)$ coexists.

Corollary

When there exits m mutually orthogonal Latin Squares of order $t+1$, we can construct $\operatorname{TBTCI}(t(t+1), p, t, p t)$ for all $p \leq m+1$.

Remark: Note that $r_{d 0} / n=p /(t+1)$ for the constructed designs. However these Latin Square based TBTCI designs are not optimal due to having small values of $r_{d 0} / n$ whenever $p /(t+1)$ is small. One way to rectify this problem is o jaxtapose these designs with TBTCI designs with $r_{d 0} / n=1$ - This is an open problem when $p<t$ [for $p=t, t+1$ see Hedayat and Yang (2005)]

For $r_{d 0}>n, p=4$

We can construct a $\operatorname{TBTCI}(2 t(t-1), 4, t, 4 t(t-1))$ with $r_{d 0} / n=2$ as the following:
Order the units from 1 to $2 t(t-1)$. For each of the first $t(t-1)$ units, assign the control treatment in periods 1 and 3 , and for periods 2 and 4, use the $t(t-1)$ ordered pair of different test treatments. For each of the remaining $t(t-1)$ units, assign the control treatment in periods 2 and 4, and for periods 1 and 3 , use the $t(t-1)$ ordered pair of different test treatments.

$$
\operatorname{TBTCI}(12,4,3,24): \begin{array}{lllllllllll}
0 & 0 & 0 & 0 & 0 & 0 & 2 & 3 & 1 & 3 & 1 \\
2 & 3 & 3 & 1 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 2 & 2 & 3 \\
1 & 1 & 2 & 2 & 3 & 3 & 0 & 0 & 0 & 0 & 0
\end{array}
$$

$\operatorname{TBTCI}(224,4,3,224)$

```
    TBTCI(4, 4, 3, 4) 
```

 TBTCI(4, 4, 3, 4)
 TBTCI(224,4,3,224) TBTCI(212,4,3,212)
TBTCI(224,4,3,224) TBTCI(212,4,3,212)
+
+
0\timesTBTCI(12, 4, 3, 24) 1
0\timesTBTCI(12, 4, 3, 24) 1
+
+
TBTCI(200, 4, 3, 200)
TBTCI(200, 4, 3, 200)
+

```
+
```

A Taste of Optimal Designs

Characteristics of Optimal Designs
Guidelines for Construction
Methods of Constructions

$\lambda=\theta /(1+\theta)$.
$\operatorname{TBTCI}(224,4,3,248), \operatorname{TBTCI}(224,4,3,236)$ and $\operatorname{TBTCI}(224,4,3,224)$.

- Construction of TBTCI designs with $r_{d 0}>n$ for $p \geq 5$.
- Alternative methods of constructing TBTCI designs for cases with solutions.
- Search for optimal designs within larger class of competing designs and the related construction problems.
- Trade-off Problems

Inferences

Afsarinejad, K. and Hedayat, A. S. 2002. Repeated measurements designs for a model with self and simple mixed carryover effects. Jour. of Stat. Plan. and Inf. 106 449-459

Hedayat, A. S. and Yang, M. 2005. Optimal and efficient crossover designs for comparing test treatments with a control treatment. Annals of Statistics 33 915-943

Kunert, J. and Martin, R. J. 2000. On the determination of optimal designs for an interference model. Ann. Statist. Assoc. 28 1728-1742
Majumdar, D. and Notz, W. I. 1983. Optimal incomplete block designs for comparing treatments with a control. Ann. Statist. 11 258-266

Acknowledge

Min Yang, Ph.D.
Professor of Statistics
University of Missouri

Thank You!

