Estimating Extremal Dependence in Time Series via the Extremogram

Richard A. Davis
Howard Levene Professor of Statistics
Columbia University
www.stat.columbia.edu/~rdavis

Thomas Mikosch
University of Copenhagen
Ivor Cribben
Columbia University

Motivating Example: Amazon-returns (May 16, 1997 - June 16, 2004

Starting point: GARCH vs SV

$$
\mathrm{X}_{\mathrm{t}}=\sigma_{\mathrm{t}} \mathrm{Z}_{\mathrm{t}} \text { (observation eqn in state-space formulation) }
$$

(i) $\operatorname{GARCH}(1,1)$

$$
X_{\mathrm{t}}=\sigma_{\mathrm{t}} Z_{t}, \quad \sigma_{t}^{2}=\alpha_{0}+\alpha_{1} X_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2},\left\{Z_{t}\right\} \sim \operatorname{IID}(0,1)
$$

(ii) Stochastic Volatility

$$
X_{t}=\sigma_{t} Z_{t}, \quad \log \sigma_{t}^{2}=\phi_{0}+\phi_{1} \log \sigma_{t-1}^{2}+\varepsilon_{t}, \quad\left\{\varepsilon_{t}\right\} \sim \operatorname{IIDN}\left(0, \sigma^{2}\right)
$$

Key question:
What intrinsic (extremal?) features in the data (if any) can be used to discriminate between these two models?

Amazon returns (GARCH model)

$\operatorname{GARCH}(1,1)$ model fit to Amazon returns:
$\alpha_{0}=.00002493, \alpha_{1}=.0385, \beta_{1}=.957, X_{t}=\left(\alpha_{0}+\alpha_{1} X_{t-1}^{2}+\beta_{1} \sigma_{t-1}^{2}\right)^{1 / 2} Z_{t}$, $\left\{Z_{t}\right\} \sim$ IID t(3.672)

Simulation from fitted $\operatorname{GARCH}(1,1)$ model

ACF Plots for Amazon

ACF of the absolute values from 15 simulated realizations from the GARCH model on previous slide.

Amazon returns (SV model)

Stochastic volatility model fit to Amazon returns: simulation based on fitted model.

Game Plan

(c) Extremes and time series modeling

- A motivating example
- Starting point: GARCH vs SV

The Extremogram

- Examples
- Sufficient conditions for existence: regular variation
- Empirical extremogram
- Illustrations (permutation procedures)
- Cross-extremogram (devolatilizing/deGARCHing)

Bootstrapping the Extremogram

- Theory \& examples

Connections with Return Times of Rare Events

The Extremogram

The extremogram of a stationary time series $\left\{X_{\}}\right\}$can be viewed as the analogue of the correlogram in time series for measuring dependence in extremes (see Davis and Mikosch (2009)).

Definition: For two sets A \& B bounded away from 0 , the extremogram is defined as

$$
\begin{aligned}
\rho_{A, B}(\mathrm{~h}) & =\lim _{\mathrm{x} \rightarrow \infty} \mathrm{P}\left(\mathbf{X}_{\mathrm{h}} \in \mathrm{xB} \mid \mathbf{X}_{0} \in \mathrm{xA}\right) \\
& =\lim _{\mathrm{x} \rightarrow \infty} \mathrm{P}\left(\mathbf{X}_{0} \in \mathrm{xA}, \mathbf{X}_{\mathrm{h}} \in \mathrm{xB}\right) / \mathrm{P}\left(\mathbf{X}_{0} \in \mathrm{xA}\right),
\end{aligned}
$$

for $h=0,1, \ldots$, provided the limit exists, where $X_{h}=\left(X_{h}, X_{h+1}, \ldots, X_{h+k}\right)$.
Remark: This definition requires that the limit exists.
a) exists for heavy-tailed time series (see forthcoming slide)
b) exists for some light-tailed time series w/ special choices of A and B.
c) extremal dependence depends on the choice of sets A \& B.

The Extremogram (cont)

If one takes $A=B=(1, \infty)$ and $k=0$, then

$$
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h})=\lim _{\mathrm{x} \rightarrow \infty} \mathrm{P}\left(\mathrm{X}_{\mathrm{h}}>\mathrm{x} \mid \mathrm{X}_{0}>\mathrm{x}\right)=\lambda\left(\mathrm{X}_{0}, \mathrm{X}_{\mathrm{h}}\right)
$$

often called the extremal dependence coefficient ($\lambda=0$ means independence or asymptotic independence).

Other choices of A and B can lead to interesting extremograms:

- $\mathrm{P}\left(\mathrm{X}_{1}<-\mathrm{x} \mid \mathrm{X}_{0}<-\mathrm{x}\right) \quad$ (negative return followed by a neg return)
- $P\left(X_{1}>x \mid X_{0}<-x\right)$ (neg return followed by a pos return)
- $\mathrm{P}\left(\mathrm{X}_{1}+\cdots+\mathrm{X}_{4}>2 \mathrm{x} \mid \mathrm{X}_{0}<-\mathrm{x}\right)$ (neg return followed by a big pos return aggregated over next 4 days)
- $P\left(X_{1}>x, \ldots, X_{4}>x \mid X_{0}>x\right)$ (pos return followed by a pos return in next 4 days)
- $P\left(\min \left\{X_{2}, X_{3}, X_{4}\right\}>x \mid X_{0}>x, X_{1}>x\right)(2$ pos returns \Rightarrow pos return $)$

The Extremogram: examples

Let $A=B=(1, \infty)$, then

$$
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h})=\lim _{\mathrm{x} \rightarrow \infty} \mathrm{P}\left(\mathrm{X}_{0}>\mathrm{x}, \mathrm{X}_{\mathrm{h}}>\mathrm{x}\right) / \mathrm{P}\left(\mathrm{X}_{0}>\mathrm{x}\right)
$$

Gaussian Processes: In this case,

$$
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h})=0 \text { for all } \mathrm{h}>0 \text { (asymptotic independence). }
$$

GARCH: In this case

$$
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h})>0 \text { for all } \mathrm{h}>0,
$$

but decays to 0 geometrically fast.
SV process: $\quad X_{t}=\sigma_{t} Z_{t}, \quad \log \sigma_{t}^{2}=\mu+\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j},\left\{\varepsilon_{t}\right\} \sim \operatorname{IIDN}\left(0, \sigma^{2}\right)$
In this case,

$$
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h})=0 \text { for all } \mathrm{h}>0 .
$$

The Extremogram: examples

Let $A=B=(1, \infty)$, then

$$
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h})=\lim _{\mathrm{x} \rightarrow \infty} \mathrm{P}\left(\mathrm{X}_{0}>\mathrm{x}, \mathrm{X}_{\mathrm{h}}>\mathrm{x}\right) / \mathrm{P}\left(\mathrm{X}_{0}>\mathrm{x}\right)
$$

$\operatorname{AR}(1): X_{t}=\phi X_{t-1}+Z_{t},\left\{Z_{t}\right\} \sim I I D$ Cauchy. Then

$$
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h})=\max \left(0, \phi^{\mathrm{h}}\right) .
$$

Note if $\phi<0$, then extremogram alternates between positive \#'s and 0
MaxMA(2): Let $\left(Z_{t}\right)$ be iid with Pareto distribution, i.e., $P\left(Z_{1}>x\right)=x^{-\alpha}$ for $x \geq 1$, and set $X_{t}=\max \left(Z_{t,} Z_{t-1}, Z_{t-2}\right)$. Then

$$
\begin{aligned}
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h}) & =1 \text { for } \mathrm{h}=0 . \\
& =2 / 3 \text { for } \mathrm{h}=1 \\
& =1 / 3 \text { for } \mathrm{h}=2 \\
& =0, \quad \text { for } \mathrm{h}>2 .
\end{aligned}
$$

\square
Regular Variation - multivariate case
Regular variation of $\mathbf{X}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{k}}\right)$: (heavy-tailed analogue of multivariate Gaussian)
(i) The radial part $|\mathbf{X}|$ is heavy-tailed, i.e.,

$$
\mathrm{P}(|\mathbf{X}|>\mathrm{tx}) / \mathrm{P}(|\mathbf{X}|>\mathrm{t}) \rightarrow \mathrm{x}^{-\alpha} .
$$

(ii) The angular part $\mathbf{X} /|\mathbf{X}|$ is asymptotically independent of the radial part $|\mathbf{X}|$, i.e., there exists a random vector $\theta \in \mathbf{S}^{k-1}$ such that

$$
\mathrm{P}(\mathbf{X} /|\mathbf{X}| \in \bullet| | \mathbf{X} \mid>\mathrm{t}) \rightarrow_{w} \mathrm{P}(\theta \in \bullet) \quad \text { as } \mathrm{t} \rightarrow \infty \text {. }
$$

$\left(\rightarrow_{w}\right.$ weak convergence on $\mathrm{S}^{k-1}=$ unit sphere in $\left.\mathrm{R}^{k}\right)$.

- $\mathrm{P}(\theta \in \bullet)$ is called the spectral measure
- α is the index of \mathbf{X}.

Definition: A time series $\left\{\mathrm{X}_{\mathrm{t}}\right\}$ is regularly varying if all the finite dimensional distributions are regularly varying.

Regular Variation - multivariate case

$R \mathrm{~V}: \mathrm{P}(|\mathbf{X}|>\mathrm{tx}) / \mathrm{P}(|\mathbf{X}|>t) \rightarrow \mathrm{X}^{-\alpha}$ and $\mathrm{P}(\mathbf{X} /|\mathbf{X}| \in \bullet| | \mathbf{X} \mid>t) \rightarrow_{w} \mathrm{P}(\theta \in \bullet)$
Three equivalent formulations of RV :

1. Polar coordinate version:

$$
\mathrm{P}(|\mathbf{X}|>\mathrm{tx}, \mathbf{X} /|\mathbf{X}| \in \bullet) / \mathrm{P}(|\mathbf{X}|>\mathrm{t}) \rightarrow_{v} \mathrm{x}^{-\alpha} \mathrm{P}(\theta \in \bullet)
$$

2. Rectangular coordinate version:

$$
\frac{P(\mathbf{X} \in \mathrm{t} \bullet)}{P(|\mathbf{X}|>\mathrm{t})} \rightarrow_{v} \mu(\bullet)
$$

μ is a measure on R^{m} which satisfies for $\mathrm{x}>0$ and A bounded away from 0 ,

$$
\mu(x A)=x^{-\alpha} \mu(A) .
$$

3. Sequential version: There exists a sequence a_{n} such that

$$
\mathrm{nP}\left(\mathrm{a}_{\mathrm{n}}{ }^{-1} \mathbf{X} \in \bullet\right) \rightarrow_{v} \mu(\bullet)
$$

Regular Variation and the Extremogram

Fact: The extremogram of a RV stationary time series $\left\{\mathrm{X}_{\mathrm{t}}\right\}$ exists.
Recall that for two sets A \& B bounded away from 0 (take the random vectors to be one-dimensional), the extremogram is given by

$$
\rho_{A, B}(h)=\lim _{x \rightarrow \infty} P\left(x^{-1} X_{0} \in A, x^{-1} X_{h} \in B\right) / P\left(x^{-1} X_{0} \in A\right)
$$

This limit can be traced back through the limiting μ measure in defn of RV. That is, defining $X=\left(X_{0}, X_{1}, \ldots, X_{h}\right)^{\prime}$, and using

$$
\mathrm{nP}\left(\mathrm{a}_{\mathrm{n}}{ }^{-1} \mathbf{X} \in \bullet\right) \rightarrow_{v} \mu(\bullet),
$$

we have

$$
\begin{aligned}
P\left(a_{n}^{-1}\left(X_{0}, X_{h}\right) \in A \times B\right) / P\left(a_{n}^{-1} X_{0} \in A\right) & =P\left(a_{n}^{-1} \mathbf{X} \in A \times R^{h-1} \times B\right) / P\left(a_{n}^{-1} X \in A \times R^{h}\right) \\
& \rightarrow \mu\left(A \times R^{h-1} \times B\right) / \mu\left(A \times R^{h}\right),
\end{aligned}
$$

in which case,

$$
\rho_{A, B}(h)=\mu\left(A \times R^{h-1} \times B\right) / \mu\left(A \times R^{h}\right) .
$$

Examples of RV Time Series

Examples: 1. Let $\left\{X_{t}\right\}$ be iid $R V(-\alpha)$, then $X=\left(X_{1}, X_{2}, \ldots, X_{k}\right)$ is regularly varying with index α and spectral distribution that is concentrated on the axes.

Interpretation: Unlikely that X_{t} and X_{t+1} are very large at the same time.
Figure: plot of $\left(X_{t}, X_{t+1}\right)$ for realization of length 10,000.
Independent Components

Extremogram:
$\rho_{\mathrm{A}, \mathrm{B}}(\mathrm{h})=0$ for all $\mathrm{h}>0$.

2. $\operatorname{AR}(1): X_{t}=\phi X_{t-1}+Z_{t},\left\{Z_{t}\right\} \sim \operatorname{IID} R V(-\alpha)$.

Interpretation: If Z_{t} is large, then $X_{t} \sim Z_{t}$ and is independent of ϕX_{t-1}.
On the other hand, $\mathrm{X}_{\mathrm{t}+1} \sim \phi \mathrm{X}_{\mathrm{t}}$
Figure: plot of $\left(X_{t}, X_{t+1}\right)$ for realization of length 10,000 with $\phi=.9$.

Extremogram: Let $A=(1, \infty)$ and $B=(1, \infty)$, then $\rho_{A, B}(h)=\max \left(0, \phi^{h}\right)$.
Note if $\phi<0$, then extremogram alternates between positive \#'s and 0 .

Examples of RV Time Series

3. $\operatorname{GARCH}(1,1): \quad X_{t}=\left(\alpha_{0}+\alpha_{1} X^{2}{ }_{t-1}+\beta_{1} \sigma^{2}{ }_{t-1}\right)^{1 / 2} Z_{t}, \quad\left\{Z_{t}\right\} \sim I I D$. $\alpha_{0}=1, \alpha_{1}=1, \beta_{1}=0$

It turns out that finite dim'I distrs are regularly varying (see Mikosch and Stăriciă (2000))

Figure: plot of $\left(X_{t}, X_{t+1}\right)$ for realization of length 10,000.

Extremogram:
$\rho_{\mathrm{A}, \mathrm{B}}(\mathrm{h})>0$ for all h .

Examples of RV Time Series

4. SV model $X_{t}=\sigma_{t} Z_{t}$

Suppose $Z_{t} \sim R V(-\alpha)$ and

$$
\log \sigma_{t}^{2}=\sum_{j=-\infty}^{\infty} \psi_{j} \varepsilon_{t-j}, \sum_{j=-\infty}^{\infty} \psi_{j}^{2}<\infty,\left\{\varepsilon_{t}\right\} \sim \operatorname{IIDN}\left(0, \sigma^{2}\right)
$$

Then $\mathbf{Z}_{\mathrm{n}}=\left(\mathbf{Z}_{1}, \ldots, \mathbf{Z}_{\mathrm{n}}\right)^{\prime}$ ' is regulary varying with index α and so is

$$
\mathbf{X}_{\mathrm{n}}=\left(\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}\right)^{\prime}=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{\mathrm{n}}\right) \mathbf{Z}_{\mathrm{n}}
$$

with spectral distribution concentrated on, the axes.

Figure: plot of $\left(\mathrm{X}_{\mathrm{t}}, \mathrm{X}_{\mathrm{t}+1}\right)$ for realization of 10,000 .

Extremogram:

$\rho_{\mathrm{A}, \mathrm{B}}(\mathrm{h})=0$ for all $\mathrm{h}>0$.

The Empirical Extremogram

A natural estimator of the extremogram is the empirical extremogram defined by

$$
\hat{\rho}_{A, B}(h)=\frac{\frac{m}{n} \sum_{t=1}^{n-h} I_{\left\{a_{m}^{-1} X_{t} \in A, a_{m}^{-1} X_{t+h} \in B\right\}}}{\frac{m}{n} \sum_{t=1}^{n} I_{\left\{a_{m}^{-1} X_{t} \in A\right\}}}
$$

where $m \rightarrow \infty$ with $m / n \rightarrow 0$ and a_{m} is the $1-m / n$ quantile of $\left|X_{t}\right|$. Note that the limit of the expectation of the numerator is

$$
m P\left(a_{m}^{-1} X_{0} \in A, a_{m}^{-1} X_{h} \in B\right) \rightarrow \mu\left(A \times R^{h-1} \times B\right),
$$

where μ is the measure defined in the statement of regular variation of the vector $\mathbf{X}=\left(\mathrm{X}_{0}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{h}}\right)^{\prime}$. Hence the empirical estimate is asymptotically "unbiased". Under suitable mixing conditions, a CLT for the empirical estimate is established in D\&M (2009).

The Empirical Extremogram - central limit theorem

$$
\hat{\rho}_{A, B}(h)=\frac{\frac{m}{n} \sum_{t=1}^{n-h} I_{\left\{a_{m}^{-1} X_{t} \in A, a_{m}^{-1} X_{t+n} \in B\right\}}}{\frac{m}{n} \sum_{t=1}^{n} I_{\left\{a_{m}^{-1} X_{t} \in A\right\}}}
$$

After first establishing a joint CLT for the numerator and denominator, we obtain the limit result

$$
(n / m)^{1 / 2}\left(\hat{\rho}_{A, B}(h)-\rho_{m}(h)\right) \rightarrow_{d} N\left(0, \sigma^{2}(A, B)\right),
$$

where $\rho_{m}(\mathrm{~h})$ is the ratio of expectations (pre-asymptotic bias),

$$
P\left(a_{m}{ }^{-1} X_{0} \in A, a_{m}^{-1} X_{h} \in B\right) / P\left(a_{m}{ }^{-1} X_{0} \in A\right) .
$$

Now provided a bias condition, such as

$$
(\mathrm{n} / \mathrm{m})^{1 / 2}\left(\mathrm{mP}\left(\mathrm{a}_{\mathrm{m}}{ }^{-1} \mathrm{X}_{0} \in \mathrm{~A}, \mathrm{a}_{\mathrm{m}}{ }^{-1} \mathrm{X}_{\mathrm{h}} \in \mathrm{~B}\right)-\mu_{\mathrm{h}}(\mathrm{~A} \times \mathrm{B})\right) \rightarrow 0,
$$

holds, then $\rho_{m}(h)$ can be replaced with $\rho_{A, B}(h)$. This condition can often be difficult to check.

Spectral Analysis for the Extremogram

For a fixed nice set C, define $\tau_{h}(C)=\gamma_{C C}(|h|)$ and $\tau_{0}(C)=\mu(C)$, i.e.,

$$
n P\left(a_{n}^{-1} X_{0} \in C, a_{n}^{-1} X_{h} \in C\right) \rightarrow \tau_{h}(C)
$$

The spectral density is then defined by

$$
f(\lambda)=\tau_{0}(C)+2 \sum_{h=1}^{\infty} \cos (\lambda h) \tau_{h}(C), \quad \lambda \in[0, \pi] .
$$

The sample version of the spectral density is give by the periodogram

$$
I_{n}(\lambda)=\hat{\gamma}_{n}(0)+2 \sum_{h=1}^{n-1} \cos (\lambda h) \hat{\gamma}_{n}(h), \quad \lambda \in[0, \pi],
$$

where $\hat{\gamma}_{n}(h)=\frac{m_{n}}{n} \sum_{t=1}^{n-h}\left(I_{\left\{a_{m}^{-1} X_{t} \in C\right\}}-P\left(a_{m}^{-1} X_{t} \in C\right)\right), \quad h \geq 0$.
In the standard time series setting, the periodogram estimator is not consistent for $f(\lambda)$. Instead, a lag-window estimator is used.

Spectral Analysis for the Extremogram

A lag-window estimator for f is defined by

$$
\hat{f}_{n}(\lambda)=\hat{\gamma}_{n}(0)+2 \sum_{h=1}^{r_{n}} \cos (\lambda h) \hat{\gamma}_{n}(h), \quad \lambda \in[0, \pi],
$$

where $r_{n} \rightarrow \infty$ and $m / r_{n} \rightarrow 0$. This estimator is asymptotically unbiased and consistent for

$$
f(\lambda)=\tau_{0}(C)+2 \sum_{h=1}^{\infty} \cos (\lambda h) \tau_{h}(C) .
$$

Theorem. Under our mixing condition and general setup,

$$
\lim _{n \rightarrow \infty} E I_{n}(\lambda)=\lim _{n \rightarrow \infty} \hat{E f_{n}}(\lambda)=f(\lambda), \quad \lambda \in(0, \pi) .
$$

If, in addition, $\mathrm{m}_{\mathrm{n}} \mathrm{r}_{\mathrm{n}}{ }^{2}=\mathrm{O}(\mathrm{n})$, then

$$
\lim _{n \rightarrow \infty} E\left(\hat{f}_{n}(\lambda)-f(\lambda)\right)^{2}=0, \quad \lambda \in(0, \pi) .
$$

Application to Five-Minute Return Data (US/DM) exchange

Application to Five-Minute Return Data (US/DM) exchange
Extremogram absolute values: choice of threshold a_{m}

Best fitting AR model is of order 18; refine with nonzero coefficients at lags $1,2,3,5,6,7,11,13,14,16$, and 18 .

Time out: Resampling and Testing for Serial Dependence
A natural way (not often used in time series) for testing serial correlation is to compute the ACF for random permutations of the data. If the sample ACF appears more extreme than the ACFs based on random permutations, then there is evidence of serial correlation. We apply the same idea to the extremogram.

Time out: Resampling and Testing for Serial Dependence

A natural way (not often used in time series) for testing serial correlation is to compute the ACF for random permutations of the data. If the sample ACF appears more extreme than the ACFs based on random permutations, then there is evidence of serial correlation. We apply the same idea to the extremogram.

Time out: Illustration with ACF (Windspeed at Kilkenny)
Wind Speed at Kilkenny 1/1/61-1/17/78

Time out: Illustration with ACF

In plotting the sample ACF, one normally includes the $\pm 1.96 /$ sqrt(n) bounds ($95 \% \mathrm{Cl}$ under the assumption of iid noise). One could use the permutation idea here as well.

Application to Five-Minute Return Data (US/DM) exchange
Extremogram for residuals from subset $\operatorname{AR}(18)$ and from GARCH $A=B=(1, \infty)$

Application to Five-Minute Return Data (US/DM) exchange

Extremogram for residuals from subset AR(18) and from GARCH $A=B=(1, \infty)$

Residuals from AR

Extremogram of a SV Process

SV Process: $X_{t}=\sigma_{t} Z_{t}, \quad\left\{Z_{t}\right\} \sim \operatorname{IID} t_{4} ; \log \sigma_{t}=.9 \log \sigma_{t-1}+\varepsilon_{t}$ $\operatorname{GARCH}(1,1): \quad \mathrm{X}_{\mathrm{t}}=\left(.1+.14 \mathrm{X}_{\mathrm{t}-1}^{2}+.83 \sigma_{\mathrm{t}-1}\right)^{1 / 2} \mathrm{Z}_{\mathrm{t}}, \quad\left\{\mathrm{Z}_{\mathrm{t}}\right\} \sim \operatorname{IID~N}(0,1)$,

SV GARCH
Threshold $=.97$ quantile

Extremogram of a Max-MA(2)

Example: Let $\left(Z_{t}\right)$ be iid with Pareto distribution, i.e., $P\left(Z_{1}>x\right)=x^{-\alpha}$ for $x \geq 1$, and set $X_{t}=\max \left(Z_{t,} Z_{t-1}, Z_{t-2}\right)$. Then

$$
\mathrm{nP}\left(\mathrm{X}_{1}>\mathrm{xn}^{1 / \alpha}\right) \rightarrow 3 \mathrm{x}^{-\alpha} \text { and } \mathrm{F}^{\mathrm{n}}\left(\mathrm{xn}^{1 / \alpha}\right) \rightarrow \exp \left(-3 \mathrm{x}^{-\alpha}\right) .
$$

On the other hand,
$P\left(n^{-1 / \alpha} M_{n} \leq x\right)=P\left(n^{-1 / \alpha} \max \left(Z_{-1}, \ldots, Z_{n}\right) \leq x\right) \rightarrow \exp \left(-x^{-\alpha}\right)=\exp \left(-1 / 33 x^{-\alpha}\right)$,
which implies that the extremal index is $\theta=1 / 3$.
The extremogram with $\mathrm{A}=\mathrm{B}=(1, \infty)$ is

$$
\begin{aligned}
\lim _{n} P\left(X_{h}>n^{1 / \alpha} \mid X_{0}>n^{1 / \alpha}\right) & =1 \quad \text { for } h=0 . \\
& =2 / 3 \text { for } h=1 \\
& =1 / 3 \text { for } h=2 \\
& =0, \quad \text { for } h>2 .
\end{aligned}
$$

Extremogram of a Max-MA(2)

Extremogram: $\lim _{n} P\left(X_{h}>n^{1 / \alpha} \mid X_{0}>n^{1 / \alpha}\right)=2 / 3,1 / 3,0$ for $h=1, h=2$, and for $h>3$, respectively. Blue $=$ sample

Cross-Extremogram

The cross-extremogram measures extremal dependence between two or more series. Suppose we have two time series $\left\{\mathrm{X}_{\mathrm{t}}\right\}$ and $\left\{\mathrm{Y}_{\mathrm{t}}\right\}$

Definition: For two sets A \& B bounded away from 0 , the crossextremogram is defined as

$$
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h})=\lim _{\mathrm{x} \rightarrow \infty} \mathrm{P}\left(\mathrm{Y}_{\mathrm{h}} \in \mathrm{xB} \mid \mathrm{X}_{0} \in \mathrm{xA}\right)
$$

For example, if X_{t} and Y_{t} represent log-returns of two stocks, then one might be interested in extremal dependence of negative returns. It may seem natural to take $A=B=(-\infty,-1]$, so that

$$
\rho_{A, B}(\mathrm{~h})=\lim _{\mathrm{x} \rightarrow \infty} \mathrm{P}\left(\mathrm{Y}_{\mathrm{h}}<-\mathrm{x} \mid \mathrm{X}_{0}<-\mathrm{x}\right) .
$$

Cross-Extremogram

As before, we estimate

$$
\rho_{\mathrm{A}, \mathrm{~B}}(\mathrm{~h})=\lim _{\mathrm{x} \rightarrow \infty} \mathrm{P}\left(\mathrm{Y}_{\mathrm{h}} \in \mathrm{xB} \mid \mathrm{X}_{0} \in \mathrm{xA}\right)
$$

by

$$
\hat{\rho}_{A, B}(h)=\frac{\frac{m}{n} \sum_{t=1}^{n-h} I_{\left\{a_{m, 1}^{-1} X_{t} \in A, a_{m, 2}^{-1} Y_{t+h} \in B\right\}}}{\frac{m}{n} \sum_{t=1}^{n} I_{\left\{a_{m, 1}^{-1} X_{t} \in A\right\}}}
$$

Problem: For log-returns, heteroskedasticity can produce spurious extremograms. That is, volatility in both series (which tends to happen in unison) produces large extremograms.

Cross-Extremogram

Strategy: Devolatilize the component series before computing the extremogram. This is analogous to the issue of spurious crosscorrelations in a time series without whitening the series first.

Devolatilizing (deGARCHing) S\&P

Extremogram for S\&P: significant for large number of lags ~40+
Devolatilize S\&P by fitting $\operatorname{GARCH}(1,1)$:

$$
\mathrm{X}_{\mathrm{t}}=\left(6.28 \mathrm{e}-7+.057 \mathrm{X}_{\mathrm{t}-1}^{2}+.939 \sigma_{\mathrm{t}-1}^{2}\right)^{1 / 2} \mathrm{Z}_{\mathrm{t}}, \quad\left\{\mathrm{Z}_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{t}(6.14),
$$

Devolatilizing S\&P

Extremogram for S\&P: significant for large number of lags ~40+
Devolatilize S\&P by fitting $\operatorname{GARCH}(1,1)$:

$$
\mathrm{X}_{\mathrm{t}}=\left(6.28 \mathrm{e}-7+.057 \mathrm{X}_{\mathrm{t}-1}^{2}+.939 \sigma_{\mathrm{t}-1}^{2}\right)^{1 / 2} \mathrm{Z}_{\mathrm{t}}, \quad\left\{\mathrm{Z}_{\mathrm{t}}\right\} \sim \operatorname{IID} \mathrm{t}(6.14),
$$

Devolatilizing (deGARCHing) FTSE

Extremogram for FTSE: significant for large number of lags ~40+
Devolatilize FTSE by fitting $\operatorname{GARCH}(1,1)$:

Devolatilizing FTSE

Extremogram for FTSE: significant for large number of lags ~40+
Devolatilize FTSE by fitting GARCH(1,1):

Bootstrapping the Extremogram

The stationary bootstrap, introduced by Politis and Romano (1994) seems well suited for the extremogram.
Stationary Bootstrap Setup: Have data $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}}$ and construct BS sample as follows:

- $\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots$, be iid uniform on $\{1, \ldots, \mathrm{n}\}$
- L_{1}, L_{2}, \ldots, be iid geometric $\left(p_{n}\right)$

The BS sample $X_{1}^{*}, \ldots, X_{n}^{*}$ is given by the first n observations in the sequence.

$$
X_{K_{1}}, \ldots, X_{K_{1}+L_{1}-1}, X_{K_{2}}, \ldots, X_{K_{2}+L_{2}-1}, \ldots, X_{K_{N}}, \ldots, X_{K_{N}+L_{N}-1}
$$

where

$$
N=\inf \left\{i \geq 1: L_{1}+\cdots+L_{i} \geq n\right\} .
$$

Bootstrapping the Extremogram

$X_{K_{1}}, \ldots, X_{K_{1}+L_{1}-1}, X_{K_{2}}, \ldots, X_{K_{2}+L_{2}-1}, \ldots, X_{K_{N}}, \ldots, X_{K_{N}+L_{N}-1}$

- $\mathrm{K}_{1}, \mathrm{~K}_{2}, \ldots$, be iid uniform on $\{1, \ldots, \mathrm{n}\}$
- $\mathrm{L}_{1}, \mathrm{~L}_{2}, \ldots$, be iid geometric $\left(\mathrm{p}_{\mathrm{n}}\right)$

Remarks

- Procedure is similar to the block bootstrap method
- Each block has a random length given by independent geometrics, L_{1}, L_{2}, \ldots.
- Mean block size is $1 / p_{n}$
- Mean number of blocks is $n p_{n}$
- By the previous two bullet points, we require

$$
\mathrm{p}_{\mathrm{n}} \rightarrow 0, \mathrm{np}_{\mathrm{n}} \rightarrow \infty .
$$

Bootstrapping the Extremogram (cont)

The extremogram, computed from either the sample or BS sample, are ratios of partial sums of the form,

$$
\hat{P}_{n}(C)=\frac{m_{n}}{n} \sum_{t=1}^{n} I_{\left\{a_{m}^{-1} X_{t} \in C\right\}} \quad \text { and } \quad \hat{P}_{n}^{*}(C)=\frac{m_{n}}{n} \sum_{t=1}^{n} I_{\left\{a_{m}^{-1} X_{t}^{*} \in C\right\}} .
$$

Theorem . Assuming our general setup (mixing conditions + regular variation, etc), and the growth conditions,

$$
\mathrm{np}_{\mathrm{n}} \underset{p}{\rightarrow \infty}, \quad \mathrm{np}^{2} / \mathrm{m}_{\mathrm{n}} \rightarrow \infty,
$$

we have $E^{*} \hat{P}_{n}^{*}(C) \xrightarrow{P} \mu(C)$ and $m s_{n}^{2}=\operatorname{Var}^{*}\left((n / m)^{1 / 2} \hat{P}_{n}^{*}(C)\right) \xrightarrow{P} \sigma^{2}(C)$.
Moreover,

$$
\sup _{x}\left|P\left((n / m)^{1 / 2}\left(m s_{n}^{2}\right)^{-1 / 2}\left(\hat{P}_{n}^{*}(C)-\hat{P}_{n}(C)\right) \leq x \mid X_{1}, \ldots, X_{n}\right)-\Phi(x)\right| \xrightarrow{P} 0
$$

Bootstrapping the Extremogram (cont)

The sample extremogram and its BS counterpart are:
$\hat{\rho}_{A, B}(h)=\frac{\frac{m}{n} \sum_{t=1}^{n-h} I_{\left\{a_{m}^{-1} X_{t} \in A, a_{m}^{-1} X_{t+h} \in B\right\}}}{\frac{m}{n} \sum_{t=1}^{n} I_{\left\{a_{m}^{-1} X_{t} \in A\right\}}} \quad \hat{\rho}_{A, B}^{*}(h)=\frac{\frac{m}{n} \sum_{t=1}^{n-h} I_{\left\{a_{m}^{-1} X_{t}^{*} \in A, a_{m}^{-1} X_{t+h}^{*} \in B\right\}}}{\frac{m}{n} \sum_{t=1}^{n} I_{\left\{a_{m}^{-1} X_{t}^{*} \in A\right\}}}$

Theorem . Assuming our general setup (mixing conditions + regular variation, etc), and the growth conditions,

$$
\mathrm{np}_{\mathrm{n}} \rightarrow \infty, \quad \mathrm{np}^{2} / \mathrm{m}_{\mathrm{n}} \rightarrow \infty,
$$

we have

$$
\begin{aligned}
& \sup _{x} \mid P\left((n / m)^{1 / 2}\left(\hat{\rho}_{A, B}^{*}(h)-\hat{\rho}_{A, B}(h)\right) \leq x \mid X_{1}, \ldots, X_{n}\right)- \\
& P\left((n / m)^{1 / 2}\left(\hat{\rho}_{A, B}(h)-\rho_{m}(h)\right) \leq x\right) \mid \xrightarrow{P} 0
\end{aligned}
$$

Significant extremogram at lags 78 and $156 \sim 6$ hrs 30 mins \& 13hrs

Bootstrap Application to 5 min Goldman-Sachs

This is an idea due to Geman and Chang (2009):
Setup:

- $\left\{X_{t}\right\}$ time series-think log-returns, for example.
- $\xi_{\mathrm{v}}, \xi_{1-\mathrm{v}}$ are the vth and $(1-\mathrm{v})$ th quantile of the of the marginal distribution.

Define the exceedance (or stopping times) times τ_{j} by

$$
\begin{aligned}
& \tau_{1}=\min \left\{t \geq 1: X_{t}<\xi_{v} \text { or } X_{t}<\xi_{1-v}\right\} \\
& \tau_{j+1}=\min \left\{t \geq \tau_{j}: X_{t}<\xi_{v} \text { or } X_{t}<\xi_{1-v}\right\}, j \geq 0 .
\end{aligned}
$$

The inter-arrival (or return times) are

$$
\mathrm{T}_{\mathrm{j}}=\tau_{\mathrm{j}}-\tau_{\mathrm{j}-1} \mathrm{j} \geq 1
$$

These are the times between occurrences of rare events (number of tosses of a coin until next head).

Connections with Return Times (of rare events)

For nice time series, like iid observations, the T_{j} 's are iid with a geometric distribution,

$$
\begin{aligned}
& P\left(T_{j}=k\right)=(1-p)^{k-1} p, k=1,2, \ldots, \\
& p=P\left(X_{t}<\xi_{v} \text { or } X_{t}>\xi_{1-v}\right)=2 v .
\end{aligned}
$$

Recall for a geometric rv,

$$
E\left(T_{1}\right)=1 / p .
$$

Note: This is the backstory behind the term 100 year flood, or 100 year blank, which corresponds to the threshold x such that the expected time until x is exceeded is 100 . (In this case, $\mathrm{p}=.01, \mathrm{x}=$ $\xi .99$.)
Idea: For v fixed (can do one-sided tail), look at the histogram of return times and compare against a geometric distribution.

Connections with Return Times (of rare events)

Idea: For v fixed (can do one sided tail), look at the histogram of return times and compare against a geometric distribution.

Example with BAC, $\mathrm{v}=.05 \Rightarrow$ geometric $(\mathrm{p}=.1)$

Connections with Return Times (of rare events)

Question: What is the connection with the extremogram?
Answer: The estimated distribution for the return times is exactly the extremogram for specially chosen sets A \& B. For example, in the upper tail case, $\mathrm{P}\left(\mathrm{T}_{1}=1\right)$ is estimated by

$$
\begin{aligned}
& \hat{P}(T=1)=\frac{\sum_{t=1}^{n-1} I_{\left\{X_{t} \geq a_{m}, X_{t+1} \geq a_{m}\right\}}}{\sum_{t=1}^{n} I_{\left\{X_{t} \geq a_{m}\right\}}}=\frac{\text { \#consecutive pairs }>\mathrm{a}_{\mathrm{m}}}{\text { \#observations }>\mathrm{a}_{\mathrm{m}}} \\
& \hat{\rho}_{A, B}(1)=\frac{\frac{m}{n} \sum_{t=1}^{n-1} I_{\left\{X_{t} \geq a_{m}, X_{t+1} \geq a_{m}\right\}}}{\frac{m}{n} \sum_{t=1}^{n} I_{\left\{X_{t} \geq a_{m}\right\}}}
\end{aligned}
$$

Remark: So theory and methodology (permutation/bootstrapping) developed for the extremogram applies to the histogram

Bootstrapping Return Times (BAC log-returns)

BAC, $v=.05 \Rightarrow G(p=.1)$

Wrap-up

- Extremogram is another potential tool for estimating extremal dependence that may be helpful for discriminating between models on the basis of extreme value behavior.
- Regular variation is a flexible tool for modeling both dependence and tail heavyness.
- Permutation procedures are a quick and clean way to test for significant values in the extremogram and other statistics.
- Bootstrapping may prove useful for constructing Cl's for the extremogram and also for assessing extremal dependence.
- The Extremogram can provide insight on extremal dependence between components in a multivariate time series.
- Interesting connection between return times and the extremogram.
- Extremogram is a cool name!

