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Motivating Example: Amazon-returns (May 16, 1997 — June 16, 2004
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Starting point: GARCH vs SV

X, =0, Z; (observation eqgn in state-space formulation)
(i) GARCH(1,1)
X, =0Z, o =0+aX] +pBol, {Z}~11D(0))
(i) Stochastic Volatility
X,=0,Z, logo; =¢,+¢ logo;, +g, {e}~1IDN(0,c)

Key question:

What intrinsic (extremal?) features in the data (if any) can be used
to discriminate between these two models?
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ACF abs values

| Amazon returns (GARCH model)

GARCH(1,1) model fit to Amazon returns:
o= .00002493, a,,= .0385, B, = .957, X;=(agto X2 +B4 0% )"?Z,
{Z}~1ID 1(3.672)

Simulation from fitted GARCH(1,1) model
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ACF Plots for Amazon

ACF of the absolute values from 15 simulated realizations from
the GARCH model on previous slide.

= & S S
2 b 23 E
o 0w W 4 o 0w » 4 o 0 @
o o (i
£54 22 22
o o B L
0 0w w4 o 0w ® 4« o o m ® 4
¥ ) [
g3 22 23 g3
s L s o Mluthn L o
0 0w W 4 o 0w n 4 o w % 4 o 0w n a
e tag (g Leg
2 53 2 2z
o 0w w4 o 0w » 4 o w n a LIRS N3
e o Ca (3

Iran 12/2010

ACF of abs values

Amazon returns (SV model)

Stochastic volatility model fit to Amazon returns: simulation based on
fitted model.
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Game Plan

%~ Extremes and time series modeling
* A motivating example
* Starting point: GARCH vs SV
% The Extremogram
* Examples
» Sufficient conditions for existence: regular variation
* Empirical extremogram
* lllustrations (permutation procedures)
* Cross-extremogram (devolatilizing/deGARCHing)
- Bootstrapping the Extremogram
* Theory & examples
%~ Connections with Return Times of Rare Events
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The Extremogram

The extremogram of a stationary time series {X;} can be viewed as the
analogue of the correlogram in time series for measuring dependence in
extremes (see Davis and Mikosch (2009)).

Definition: For two sets A & B bounded away from 0, the extremogram
is defined as

pap(h) = lim, , P(X, € xB | X, € xA)
= lim,_, P (X, € XA, X, € xB)/P(X, € xA),
forh =0, 1, ..., provided the limit exists, where X, =(X;,,Xp+1s- - Xn+x)-

Remark: This definition requires that the limit exists.
a) exists for heavy-tailed time series (see forthcoming slide)
b) exists for some light-tailed time series w/ special choices of A and B.
c) extremal dependence depends on the choice of sets A & B.
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The Extremogram (cont)

If one takes A=B=(1,) and k = 0, then
Pas(h) = lim, ., P(X, >X | Xo>X) = 4(Xo,X,)
often called the extremal dependence coefficient (A = 0 means
independence or asymptotic independence).
Other choices of A and B can lead to interesting extremograms:
*P(X; <-x| X,<-x) (negative return followed by a neg return)
* P(X; > x| X, < -x) (neg return followed by a pos return)
*P(Xy + -+ X,>2x | X, <-x) (neg return followed by a big pos
return aggregated over next 4 days)
* P(Xy>x,...,Xs>x|X,>Xx) (pos return followed by a pos
return in next 4 days)
* P(min{X,, X5, X, } > x| X, > X, X; > X) (2 pos returns=pos return)

Iran 12/2010 10

The Extremogram: examples

LetA=B = (1,), then
pas(h) = lim, . P(Xy > x, X, > x)/P(X,> x)
Gaussian Processes: In this case,
pap(h) =0 forallh >0 (asymptotic independence).
GARCH: In this case
pag(h) >0 forallh >0,
but decays to 0 geometrically fast.
SV process: X, =c,Z, logc? :H+i“’j8t—j' {,}~ IDN(0,6°)
In this case, =

pag(h) =0 forall h>0.
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The Extremogram: examples

LetA=B = (1,), then
pap(h) =lim,_ P(X; > x, X;, > x)/P(X,> x)
AR(1): X;= ¢ X4 + Z,, {Z}~IID Cauchy. Then
pag(h) = max(0, ¢").
Note if ¢ < 0, then extremogram alternates between positive #s and 0

MaxMA(2): Let (Z;) be iid with Pareto distribution, i.e., P(Z; > x) = x*
for x >1, and set X, = max(Z, Z,4, Z,). Then
pag(h)=1 forh=0.

=2/3 forh=1
=1/3 forh=2
=0, forh>2.
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Regular Variation — multivariate case

Regular variation of X=(Xy, ..., X;): (heavy-tailed analogue of
multivariate Gaussian)

(i) The radial part |X| is heavy-tailed, i.e.,
P(IX|> tx)/P(|X|>t) > x.

(ii) The angular part X / |X| is asymptotically independent of the
radial part |X|, i.e., there exists a random vector @ e Sk' such that

PX/IX| € o| [X]Pt) >, PO ce) ast— «.
(-, weak convergence on Sk-! = unit sphere in Rk) .
* P( 0 € o) is called the spectral measure
* a is the index of X.
Definition: A time series {X{} is regularly varying if all the finite

dimensional distributions are regularly varying. 13
Iran 12/2010




Regular Variation — multivariate case

RV: P(|X|> tx)/P(|X|>t) —> x> and P(X/|X| € o | |X|>t) >, P(0 € o)
Three equivalent formulations of RV:
1. Polar coordinate version:
P(X|> tx, X/|X] € @ }/P(IX]>t) -, x*P(® c o)
2. Rectangular coordinate version:

P(X ete)

P(|X|>t)—>v 1(e)

p is a measure on R™ which satisfies for x > 0 and A bounded away
from O,
H(xA) = x p(A).
3. Sequential version: There exists a sequence a,, such that

nP(a, X o) -, u(e)

Iran 12/2010

Regular Variation and the Extremogram

Fact: The extremogram of a RV stationary time series {X;} exists.

Recall that for two sets A & B bounded away from 0 (take the random
vectors to be one-dimensional), the extremogram is given by

pap(h) =lim,_ P(x'Xye A, x'X, € B) P(x'X, € A)
This limit can be traced back through the limiting u measure in defn of
RV. Thatis, defining X =(X,, X4, . . .,X;)’, and using
nP(a, "X € o) =, (s ),
we have
P(a, '(Xq.Xp,) € AxB)/P(a,, X, € A) = P(a,"Xe AxRM'xB)/P(a,, X € AxR")

— WAXRMxB)/u(AXRN),
in which case,

pas(h) = n(AXR™xB)/u(AXR"). 15
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Examples of RV Time Series

Examples: 1. Let {X} be iid RV(-a), then X= (X;, X,, .. ., X\) is
regularly varying with index o and spectral distribution that is
concentrated on the axes.

Interpretation: Unlikely that X, and X, are very large at the same
time.
Figure: plot of (X;,X..) for realization of length 10,000.

Independent Components

Extremogram:
pag(h) =0 forallh>0.

Iran 12/2010

2. AR(1): X= 6 Xos + Z,, {Z3}~IID RV(-01).

Interpretation: If Z, is large, then X,~ Z, and is independent of ¢ X, 4.
On the other hand, X,1 ~ ¢ X,

Figure: plot of (X,, X,.4) for realization of length 10,000 with ¢ = .9.

AR(1), X_{t+1} vs. X_t

x={te1}

Extremogram: Let A=(1,:0) and B = (1,:0), then p, g(h) = max(0, ¢").

Note if ¢ <0, then extremogram alternates between positive #'s and 0.
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Examples of RV Time Series

3. GARCH(1,1): X&(ogtay X2 B0 )"?Z,  {Z}~IID.
0p=1, a =1, B,=0

It turns out that finite dim’l distrs are regularly varying (see Mikosch and
Staricia (2000))

Figure: plot of (X, X.4) for realization of length 10,000.
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L

Extremogram:

pag(h) > O for all h,

X_{t+1}

-20
L
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Examples of RV Time Series
4. SV model X; = 6, Z;
Suppose Z, ~ RV(-a) and

loge? = > we._,, D Wi <n{e}~IDN(0G).
J=—0©

j:—m

Then Z,=(Z,,...,Z,) is regulary varying with index o and so is
Xo= (Xy,...,X,) = diag(oy,...,0,) Z,

with spectral distribution concentrated on the axes

10000
L

Figure: plot of (X, X1) g 1- .
for realization of 10,000. | N . " .
Extremogram: S
pas(h) = 0forallh>0. i
-5000 0 s 5000 10000 0
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The Empirical Extremogram

A natural estimator of the extremogram is the empirical
extremogram defined by

m

YA
R n< {a, X,ed,a, X, , <B}
pA,B(h): m )

where m — o with m/n — 0 and a, is the 1-m/n quantile of |X{].
Note that the limit of the expectation of the numerator is

mP (a, "X, €A, a,, "X, € B) - p(AxR™1xB),

where p is the measure defined in the statement of regular variation
of the vector X =(X,, Xy, . .. ,X,). Hence the empirical estimate is
asymptotically “unbiased”. Under suitable mixing conditions, a CLT
for the empirical estimate is established in D&M (2009).

Iran 12/2010 22

The Empirical Extremogram — central limit theorem

m n—h

; Zl{a;}x, eA,a;}X,,, B}
i~ _ t=1
Pz (h)= "

After first establishing a joint CLT for the numerator and
denominator, we obtain the limit result

(nlm)"(p, (1)~ p,,(h)) =, N(0,0”(4, B)),

where p.(h) is the ratio of expectations (pre-asymptotic bias),
P (a, "X €A, a, "X, e B)Y P (a,,; "X, € A).

Now provided a bias condition, such as
(n/m)12 (mP (a,/ X, € A, X, € B) — uy(AxB)) — 0,

holds, then p,,(h) can be replaced with p, g(h). This condition can
often be difficult to check.
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Spectral Analysis for the Extremogram

For a fixed nice set C, define 1,(C) = ycc(|h]) and t,(C)= n(C), i.e.,
nP(a'X,eC,a'X, eC)—r,(C)
The spectral density is then defined by
0 =rO(C)+2§:cos(zh)r,,(C), Ae[0.7]

The sample version of the spectral density is give by the periodogram

1,(A)=7,0)+25 cos@n)7, (), Ae[07],

h=1

n—h
where 7,(0)="2 3 (I, ., ~P@;X,€C)), h=0.
n o4 m

In the standard time series setting, the periodogram estimator is not
consistent for f(A). Instead, a lag-window estimator is used.

Iran 12/2010
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Spectral Analysis for the Extremogram

A lag-window estimator for f is defined by
5,0 =7,0)+2) cosh)7, (h),  Ael0.7],
h=1

where r,—< and m/r, —»0. This estimator is asymptotically unbiased
and consistent for

() =1,(C)+23 cos(@hz, (©).

Theorem. Under our mixing condition and general setup,

limEL () = Ii_)rQEﬁl(A): f(), 1e(0,7).

If, in addition, m_r,2=0O(n), then

iME(f, (A~ f(D) =0, Ae(0,7).

Iran 12/2010
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Application to Five-Minute Return Data (US/DM) exchange
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Iran 12/2010 30

Application to Five-Minute Return Data (US/DM) exchange

Extremogram absolute values: choice of threshold a,,
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Application to Five-Minute Return Data (US/DM) exchange

Extremogram A=B=(1,x)
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Application to Five-Minute Return Data (US/DM) exchange

Extremogram A=B=(1,x)
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Best fitting AR model is of order 18; refine with nonzero coefficients
atlags 1, 2, 3,5,6,7, 11,13, 14, 16, and18.
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extremogram

0.0

Application to Five-Minute Return Data (US/DM) exchange

Extremogram A=B=(1,)

L
&

T T
20 40

lag lag (hy
Best fitting AR m der 18; refine with nonzero coefficients
atlags 1, 2, 3, .13, 14, 16, and18.

34
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Time out: Resampling and Testing for Serial Dependence

A natural way (not often used in time series) for testing serial
correlation is to compute the ACF for random permutations of the
data. If the sample ACF appears more extreme than the ACFs based
on random permutations, then there is evidence of serial correlation.
We apply the same idea to the extremogram.

©

=1

0.6

extremogram
0.4
I

0.2

e e mariet o=

0.0

T T T
0 50 100 150 200
lag 35
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Time out: Resampling and Testing for Serial Dependence

A natural way (not often used in time series) for testing serial
correlation is to compute the ACF for random permutations of the
data. If the sample ACF appears more extreme than the ACFs based
on random permutations, then there is evidence of serial correlation.
We apply the same idea to the extremogram.

«©
o

0.6

extremogram
0.4

0.2

0.0

lag
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Time out: lllustration with ACF (Windspeed at Kilkenny)

Wind Speed at Kilkenny 1/1/61-1/17/78

speed (knots)

T T T T T T T T T
1961 1963 1965 1967 1969 1971 1973 1975 1977

time
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Time out: lllustration with ACF

In plotting the sample ACF, one normally includes the £1.96/sqrt(n)
bounds (95% CI under the assumption of iid noise). One could use
the permutation idea here as well.

1.0

0.8

0.6

acf

N
S
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extremogram

Application to Five-Minute Return Data (US/DM) exchange

Extremogram for residuals from subset AR(18) and from GARCH
A=B=(1,x)

Residuals from AR Residuals from GARCH

0.0z
I

0 20 40 60 80 100 0 20 40 60 80 100
lag lag
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extremogram

Application to Five-Minute Return Data (US/DM) exchange

Extremogram for residuals from subset AR(18) and from GARCH
A=B=(1,x)

Residuals from AR

Residuals from GARCH
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L
1
I

0.10
L
0.10
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100
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Extremogram of a SV Process
SV Process: X&=0;Z,, {Z}~IIDt,;logo; =.9log o, +¢
GARCH(1,1): X=(.1+.14 X2, +.8302, )"2Z,, {Z}~1ID N(0,1),
SV GARCH
Threshold = .97 quantile
44
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extremogram

Extremogram of a SV Process

SV Process: X&=6,Z,, {Z}~1IDt,;logo, =.9log o4 + ¢
GARCH(1,1): X=(.1+.14 X2, +.830%_,)"2Z,, {Z} ~1ID N(0,1),

0.04 0.06 0.08

0.02 0.04 0.06 0.08 0.10 0.12
0.02

Threshold = .97 quantile

45
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Extremogram of a Max-MA(2)

Example: Let (Z,) be iid with Pareto distribution, i.e., P(Z, > x) = x©

for x 21, and set X;= max(Z, Z,,, Z;,). Then
nP(X; > xn"*) - 3x* and F"(xn"*) — exp(-3x*).
On the other hand,
P(nYeM, <x)=P(n"*max(Z, ,..., Z,) < X) > exp(-x®)=exp(-1/3 3x*),
which implies that the extremal index is 6 = 1/3.

The extremogram with A=B = (1, «) is
lim, P(X, >n"«| X, >n") =1 forh=0.
=2/3 forh=1
=1/3 forh=2
=0, forh>2.
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Extremogram of a Max-MA(2)

Extremogram: lim,, P(X,, > ne | X, > n") = 2/3,1/3, 0 for

h =1, h=2, and for h > 3, respectively. Blue = sample

0.6
!

extremogram

0.2
!

0.0
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Log-returns for FTSE and S&P (Apr 4, '84-Oct 2, '09
¢ 37
l; 1 DD:) 200:) 300:) 400‘0 500‘0 600‘0
T T T T T T T 50
Iran 12/2010 o 1000 2000 3000 4000 5000 5000

12/2/2010

19



Log-returns for DAX and Nikkei (Apr 4, '84-Oct 2, "09
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|
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Extremogram for FTSE, S&P, DAX, Nikkei
| FTSE N S&P
0 10 20 30 40 0 10 20 30 40
34 lag 3 lag
<7 DAX e Nikkei
g g
g 5 L
N .
Iran +2/2010 1‘0 2‘0 3‘0 4‘0 (‘1 1‘0 z‘u 3‘0 52‘0
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extremogram

extremogram

Extremogram for FTSE, S&P, DAX, Nikkei

FTSE S&P

extremogram
02

° DAX = Nikkei

0
extremogram
0

iran 1212010

Cross-Extremogram

The cross-extremogram measures extremal dependence between two
or more series. Suppose we have two time series {X;} and {Y}

Definition: For two sets A & B bounded away from 0, the cross-
extremogram is defined as

pas(h) = lim, ,,P(Y, € xB | Xoe XA)

For example, if X, and Y, represent log-returns of two stocks, then one
might be interested in extremal dependence of negative returns. It
may seem natural to take A=B=(-»,-1], so that

pag(h) = lim,, P(Y, <-x| Xy < -x).

Iran 12/2010
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Cross-Extremogram

As before, we estimate
pag(h) =lim, , P(Y, € xB | X, € xA)
by

- Z {ah X, a5, eBY

72 {a,, ,1X,eA}

pA s(h)=

Problem: For log-returns, heteroskedasticity can produce spurious
extremograms. That is, volatility in both series (which tends to
happen in unison) produces large extremograms.

Iran 12/2010
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Cross-Extremogram FTSE and SP
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extremogram
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Cross-Extremogram

Strategy: Devolatilize the component series before computing the
extremogram. This is analogous to the issue of spurious cross-

correlations in a time series without whitening the series first.

Iran 12/2010
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Devolatilizing (dleGARCHing) S&P

Extremogram for S&P: significant for large number of lags ~40+

Devolatilize S&P by fitting GARCH(1,1):

X=(6.28e~7+.057 X2, +.93962, ,)"2Z,, {Z} ~IID t(6.14),

de-volatilized

|1‘|' IR

-10

T T T T T T
Iran 12/20109 1000 2000 3000 4000 5000 6000
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Devolatilizing S&P

Extremogram for S&P: significant for large number of lags ~40+

Devolatilize S&P by fitting GARCH(1,1):
X=(6.28e-7+.057 X2, +.93902, ,)"2Z,, {Z} ~1ID t(6.14),

0.4

0.2 0.3
|

extremogram

0.1

0.0
|

Iran 12/2010 lag 59

Devolatilizing (dleGARCHing) FTSE

Extremogram for FTSE: significant for large number of lags ~40+
Devolatilize FTSE by fitting GARCH(1,1):

X=(1.32e—6+.084 X2, +.90402, ,)"2Z, {Z}~ D t(13),

de-volatilized
0
|

T T T T T T T
0 1000 2000 3000 4000 5000 6000

time
Iran 12/2010 %
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Devolatilizing FTSE

Extremogram for FTSE: significant for large number of lags ~40+

Devolatilize FTSE by fitting GARCH(1,1):
X/=(6.28e-7+.057 X2, +.93902,_,)12Z,, {Z} ~ IID t(6.14),
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extremogram

00 02 04 06

extremogram

00 02 04 06

extremogram
00 02 04 06
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FTSE |

extremogram
00 02 04 06

extremogram

00 02 04 06
extremogram

00 02 04 06

.

0 5 10 15 0 5 10 15 0 5 10 15
lag lag lag

&

15 0 5 10 15 0 5 10 15

tremogram
00 02 04 06

extremogram
00 02 04 06

o
@
& 4
3

» No symmetry at lag 1 (compare second
Second row (conditional on column and second row).

l lag 1'_ Ehiem _a slgiEE L -Extreme event in FTSE and DAX
(Biel] @rEn i FUslE DAX: will have an impact the same day
L - FUSE, Bt Ebse e on S&P (not so much for Nikkei).

so the ripple effect of S&i win 11Ut Us 1St W Ui HIsAL Uay

L (p033|bly current day for FTSE and DAX).

15
lag

Bootstrapping the Extremogram

The stationary bootstrap, introduced by Politis and Romano (1994)
seems well suited for the extremogram.

Stationary Bootstrap Setup: Have data X4, . . ., X, and construct BS
sample as follows:
* Ky, Ky, ..., beiid uniformon {1,..., n}

* Ly Ly, ..., beiid geometric(p,)

The BS sample X; ..., X, is given by the first n observations in the

n

sequence.
XKl,...,XKﬁlﬂ_l,XKZ,...,X,(Z+LQ_1,...,)(,<N,...,XKN+LN_l
where

N=inf{>1:L +---+L >n}.

68

Iran 12/2010

12/2/2010

26



Bootstrapping the Extremogram

Xy Xor 10 X v Xt v X oo Xt 4

KL LY

* Ky, Ky, .. ., beiid uniform on {1,..., n}

* L,, L, ..., beiid geometric(p,)
Remarks

* Procedure is similar to the block bootstrap method
» Each block has a random length given by independent
geometrics, Ly, Ly, . . ..
* Mean block size is 1/p,
* Mean number of blocks is np,,
» By the previous two bullet points, we require
p, = 0,np, — .
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Bootstrapping the Extremogram (cont)

The extremogram, computed from either the sample or BS sample, are
ratios of partial sums of the form,

n ~ m, n
n Zl{a;lX,EC} and Rl (C) = n Zl a;}X;eC} '
t=1 =1

B(C)=""

Theorem . Assuming our general setup (mixing conditions + regular
variation, etc), and the growth conditions,

np, — <, np2m,— o,
A P * N P
we have E'P'(C)— u(C) andms? = Var ((n/ m)'* P'(C)) —»o*(C).
Moreover,

sup| PG/ m)!"? ms;) (B (C) =, (C)) %] Xy X,) = D(x) [0
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Bootstrapping the Extremogram (cont)

The sample extremogram and its BS counterpart are:

m n=h m n—h
; Zl{a;}){/ EA,G;IXH},EB} ; Zl{a;’lX:EA,a;,lX;heB}
A 1=1 Py =1
P4 B(h)= n P B(h)= P
oy o
> . D A
p & s p & i

Theorem . Assuming our general setup (mixing conditions + regular
variation, etc), and the growth conditions,

np, — «©, np?m,— o,
we have

sup| P((n/m)"* (55 (h) = P (M) < x| X0, X,) =

P((n] m)* (B, (h) — P (1) <) | >0
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Application to FTSE (lower tail)

04

Red =97.5% /.025% gtles for p*
Blue = extremogram
7 &+ Blue dot = mean BS

extremogram
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p, =1/50 p, =1/200
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Application to FTSE (lower tail)

< T Red =95% Cl’s for p
Blue = extremogram
o T Green = level .03
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Application to 5-Minute Return Data (Goldman Sachs)
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Significant extremogram at lags 78 and 156 ~ 6 hrs 30 mins & 13hrs
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Bootstrap Application to 5 min Goldman-Sachs

0.3

0.2

0.1

g Gty d,
il

7 bt 'y

0.0

p, =.02 (mean block size is 50)
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Bootstrap Application to 5 min Goldman-Sachs
2‘ 5‘0 1(;0 1;0 2(‘)0
p,, =.005 (mean block size is 200)
BS reps = 100
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Bootstrap Application to 5 min Goldman-Sachs
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Connections with Return Times (of rare events)

This is an idea due to Geman and Chang (2009):
Setup:
« {X} time series—think log-returns, for example.
* &, &, are the vth and (1-v)th quantile of the of the marginal
distribution.
Define the exceedance (or stopping times) times 1; by
T=min{ t21: X; < g, or X, < &,_,}
T=min{t 27 X < g, or X, <&}, j20.
The inter-arrival (or return times) are
T=t—-14 )21

These are the times between occurrences of rare events (number of

tosses of a coin until next head).
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Connections with Return Times (of rare events)

For nice time series, like iid observations, the T,’s are iid with a
geometric distribution,

P(T, =k) = (1-p)'p, k=1,2, ...,

p=PX <g orX >¢,)=2v.
Recall for a geometric rv,

E(T,) = 1/p.
Note: This is the backstory behind the term 100 year flood, or 100
year blank, which corresponds to the threshold x such that the
expected time until x is exceeded is 100. (In this case, p = .01, x=
€.99-)
Idea: For v fixed (can do one-sided tail), look at the histogram of

return times and compare against a geometric distribution.
Iran 12/2010
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Connections with Return Times (of rare events)

Idea: For v fixed (can do one sided tail), look at the histogram of

return times and compare against a geometric distribution.
Example with BAC, v=.05 = geometric(p=.1)
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Connections with Return Times (Daily Returns for DAC)

BAC, 2 tail, v=.05 = G(p=.1)

BAC, lower only v=.01 =
G(p=.1):
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Connections with Return Times

BAC devolatilized
v=.05 = G(p=.1)

BAC devolatilized
lower tail only v=.01 =
G(p=.1)
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Connections with Return Times (of rare events)

Question: What is the connection with the extremogram?
Answer: The estimated distribution for the return times is exactly
the extremogram for specially chosen sets A & B. For example,
in the upper tail case, P(T, = 1) is estimated by
n=1
I . .
2 it 5000 _ #consecutie pairs>a,,

P(T=1)="2 _
C #observatims >a,,
;I{X@am}

m n-1
2 ez
t=1

IbA,B (1) = P

%ZI{X,Z%}

t=1

Remark: So theory and methodology (permutation/bootstrapping)

developed for the extremogram applies to the histogram
93
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Bivariate Return Times (Citibank and Bank of America)

BAC given CB BAC given CB devolatilized
v=.05 = G(p=.1) v=.05 = G(p=.1)
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Bivariate Return Times (Citibank and Bank of America)

BAC given CB BAC given CB devolatilized
v=.05 = G(p=.1) v=.05 = G(p=.1)
return_time return_time
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Bootstrapping Return Times (BAC log-returns)
BAC, v=.05 = G(p=.1)
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Wrap-up

» Extremogram is another potential tool for estimating extremal
dependence that may be helpful for discriminating between models
on the basis of extreme value behavior.

* Regular variation is a flexible tool for modeling both dependence
and tail heavyness.

» Permutation procedures are a quick and clean way to test for
significant values in the extremogram and other statistics.

* Bootstrapping may prove useful for constructing Cl's for the
extremogram and also for assessing extremal dependence.

* The Extremogram can provide insight on extremal dependence
between components in a multivariate time series.

* Interesting connection between return times and the extremogram.

» Extremogram is a cool name!
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