Path ideals of graphs

Sara Saeedi Madani (joint with Dariush Kiani)

Amirkabir University of Technology

December 2011

A (1) < (2) </p>

臣

∢ ≣ ▶

Sara Saeedi Madani (joint with Dariush Kiani) Path ideals of graphs

Each element of Δ is called a face and maximal faces (under inclusion) are called facets of Δ .

Each element of Δ is called a face and maximal faces (under inclusion) are called facets of Δ .

For $F \in \Delta$, dimension of F is defined as dim(F) = |F| - 1 and

 $\dim(\Delta) = \max\{\dim(F) : F \in \Delta\}.$

白 ト イヨト イヨト

Each element of Δ is called a face and maximal faces (under inclusion) are called facets of Δ .

For $F \in \Delta$, dimension of F is defined as $\dim(F) = |F| - 1$ and $\dim(\Delta) = \max\{\dim(F) : F \in \Delta\}.$

We say that Δ is **pure** if all its facets have the same dimension.

高 と く ヨ と く ヨ と

Each element of Δ is called a face and maximal faces (under inclusion) are called facets of Δ .

For $F \in \Delta$, dimension of F is defined as dim(F) = |F| - 1 and

 $\dim(\Delta) = \max\{\dim(F) : F \in \Delta\}.$

向下 イヨト イヨト

We say that Δ is pure if all its facets have the same dimension.

A vertex cover of Δ is a subset A of V, with the property that for every facet F_i there is a vertex $x_j \in A$ such that $x_j \in F_i$. A minimal vertex cover of Δ is a subset A of V such that A is a vertex cover and no proper subset of A is a vertex cover of Δ .

The smallest cardinality of a minimal vertex cover of Δ is called the vertex covering number of Δ .

A simplicial complex Δ is unmixed if all of its minimal vertex covers have the same cardinality.

A vertex cover of Δ is a subset A of V, with the property that for every facet F_i there is a vertex $x_j \in A$ such that $x_j \in F_i$. A minimal vertex cover of Δ is a subset A of V such that A is a vertex cover and no proper subset of A is a vertex cover of Δ .

The smallest cardinality of a minimal vertex cover of Δ is called the vertex covering number of Δ .

A simplicial complex Δ is unmixed if all of its minimal vertex covers have the same cardinality.

Let $R = k[x_1, \ldots, x_n]$, where k is a field.

For a simplicial complex Δ with vertex set $\{x_1, \ldots, x_n\}$, the Stanley-Reisner ideal of Δ is defined as:

$$I_{\Delta} = (\prod_{x \in F} x : F \notin \Delta).$$

Example

Let $\Delta = \langle \{x_1, x_2, x_4\}, \{x_2, x_3\}, \{x_3, x_4\} \rangle$, then

$$I_{\Delta} = (x_2 x_3 x_4, x_1 x_3) \subseteq k[x_1, \ldots, x_4]$$

▲□→ ▲ 田 → ▲ 田 →

Stanley-Reisner rings

Let $R = k[x_1, \ldots, x_n]$, where k is a field.

For a simplicial complex Δ with vertex set $\{x_1, \ldots, x_n\}$, the Stanley-Reisner ideal of Δ is defined as:

$$I_{\Delta} = (\prod_{x \in F} x : F \notin \Delta).$$

Example

Let
$$\Delta = \langle \{x_1, x_2, x_4\}, \{x_2, x_3\}, \{x_3, x_4\} \rangle$$
, then

$$I_{\Delta}=(x_2x_3x_4,x_1x_3)\subseteq k[x_1,\ldots,x_4]$$

▲御▶ ★臣▶ ★臣▶

Stanley-Reisner ring associated to Δ : $k[\Delta] = R/I_{\Delta}$

Stanley-Reisner rings

Let $R = k[x_1, \ldots, x_n]$, where k is a field.

For a simplicial complex Δ with vertex set $\{x_1, \ldots, x_n\}$, the Stanley-Reisner ideal of Δ is defined as:

$$I_{\Delta} = (\prod_{x \in F} x : F \notin \Delta).$$

Example

Let
$$\Delta = \langle \{x_1, x_2, x_4\}, \{x_2, x_3\}, \{x_3, x_4\} \rangle$$
, then

$$I_{\Delta} = (x_2 x_3 x_4, x_1 x_3) \subseteq k[x_1, \ldots, x_4]$$

→ 御 → → 注 → → 注 →

Stanley-Reisner ring associated to Δ : $k[\Delta] = R/I_{\Delta}$

The facet ideal of Δ is

$$I(\Delta) = (\prod_{x \in F} x : F \text{ is a facet of } \Delta).$$

Example

Let $\Delta = \langle \{x_1, x_2, x_4\}, \{x_2, x_3\}, \{x_3, x_4\} \rangle$, then

$$I(\Delta) = (x_1 x_2 x_4, x_2 x_3, x_3 x_4) \subseteq k[x_1, \dots, x_4].$$

◆□ → ◆□ → ◆ □ → ◆ □ → ●

The facet ideal of Δ is

$$I(\Delta) = (\prod_{x \in F} x : F \text{ is a facet of } \Delta).$$

Example

Let $\Delta = \langle \{x_1, x_2, x_4\}, \{x_2, x_3\}, \{x_3, x_4\} \rangle$, then

$$I(\Delta) = (x_1x_2x_4, x_2x_3, x_3x_4) \subseteq k[x_1, \ldots, x_4].$$

イロト イヨト イヨト イヨト

For a squarefree monomial ideal $I = (M_1, ..., M_q)$ we define $\delta_{\mathcal{F}}(I)$ to be the simplicial complex over a set of vertices $\{v_1, ..., v_n\}$ with facets $F_1, ..., F_q$, where for each i, $F_i = \{v_j : x_j | M_i, 1 \le j \le n\}$. We call $\delta_{\mathcal{F}}(I)$ the facet complex of I.

For a squarefree monomial ideal *I*, we have

ht(I) = vertex covering number of $\delta_{\mathcal{F}}(I)$.

・ 回 ト ・ ヨ ト ・ ヨ ト

For a squarefree monomial ideal $I = (M_1, ..., M_q)$ we define $\delta_{\mathcal{F}}(I)$ to be the simplicial complex over a set of vertices $\{v_1, ..., v_n\}$ with facets $F_1, ..., F_q$, where for each i, $F_i = \{v_j : x_j | M_i, 1 \le j \le n\}$. We call $\delta_{\mathcal{F}}(I)$ the facet complex of I.

For a squarefree monomial ideal I, we have

 $ht(I) = vertex \ covering \ number \ of \ \delta_{\mathcal{F}}(I).$

・ 回 ト ・ ヨ ト ・ ヨ ト

Let G = (V, E) be a finite simple graph with vertex set $V = \{x_1, \ldots, x_n\}$ and edge set E. Associated to G is a monomial ideal

$$I(G) = (x_i x_j : \{x_i, x_j\} \in E),$$

同 と く ヨ と く ヨ と

called the edge ideal of G.

$$I(G) = (x_1x_2, x_2x_3, x_3x_4, x_4x_5, x_5x_1).$$

・ロト ・回ト ・ヨト ・ヨト

Let G = (V, E) be a directed graph with vertex set $V = \{x_1, \ldots, x_n\}$ and edge set E. Fix an integer $2 \le t \le n$. Associated to G is a monomial ideal

 $I_t(G) = (x_{i_1} \cdots x_{i_t} : x_{i_1}, \dots, x_{i_t} \text{ is a path of length t in } G),$

▲□ → ▲ □ → ▲ □ → …

called the path ideal of G.

We have $I_2(G) = I(G)$. So $I_t(G)$ is sometimes called the generalized edge ideal of G.

Let G = (V, E) be a directed graph with vertex set $V = \{x_1, \ldots, x_n\}$ and edge set E. Fix an integer $2 \le t \le n$. Associated to G is a monomial ideal

 $I_t(G) = (x_{i_1} \cdots x_{i_t} : x_{i_1}, \dots, x_{i_t} \text{ is a path of length t in } G),$

▲□ → ▲ □ → ▲ □ → …

called the path ideal of G.

We have $I_2(G) = I(G)$. So $I_t(G)$ is sometimes called the generalized edge ideal of G.

Path ideals

$$I_3(G) = (x_1x_3x_6, x_1x_2x_4, x_2x_4x_7, x_1x_2x_5, x_2x_5x_8).$$

< □ > < □ > < □ > < □ > < □ > < □ >

For a directed graph G, the simplicial complex $\Delta_t(G)$ is defined to be

 $\Delta_t(G) = \langle \{v_{i_1}, \ldots, v_{i_t}\} : v_{i_1}, \ldots, v_{i_t} \text{ is a path of length t in } G \rangle.$

So, we have

 $I_t(G) = I(\Delta_t(G)).$

・回 と く ヨ と く ヨ と

2

For a directed graph G, the simplicial complex $\Delta_t(G)$ is defined to be

$$\Delta_t(G) = \langle \{v_{i_1}, \ldots, v_{i_t}\} : v_{i_1}, \ldots, v_{i_t} \text{ is a path of length t in } G \rangle.$$

So, we have

 $I_t(G) = I(\Delta_t(G)).$

・日・ ・ヨ・ ・ヨ・

A finitely generated graded module M over R is said to satisfy the Serre's condition S_r if depth $M_P \ge \min(r, \dim M_P)$, for all $P \in \operatorname{Spec}(R)$.

伺 ト イヨト イヨト

A graded *R*-module *M* is called sequentially Cohen-Macaulay (resp. S_r) (over *k*) if there exists a finite filtration of graded *R*-modules

$$0 = M_0 \subset M_1 \subset \cdots \subset M_r = M$$

such that each M_i/M_{i-1} is Cohen-Macaulay (resp. S_r), and the Krull dimensions of the quotients are increasing:

 $\dim(M_1/M_0) < \dim(M_2/M_1) < \cdots < \dim(M_r/M_{r-1})$

Suppose that *I* is a homogeneous ideal of *R* whose generators all have degree *d*. Then *I* has a linear resolution if for all $i \ge 0$, $\beta_{i,j}(I) = 0$ for all $j \ne i + d$.

白 ト イヨト イヨト

Let *I* be a squarefree monomial ideal. The Alexander dual of $I = (x_{1,1} \cdots x_{1,s_1}, \dots, x_{t,1} \cdots x_{t,s_t})$ is the ideal

$$I^{\vee}=(x_{1,1},\ldots,x_{1,s_1})\cap\cdots\cap(x_{t,1},\ldots,x_{t,s_t}).$$

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

Yanagawa-Terai

Let $r \ge 2$. A simplicial complex Δ is S_r if and only if the minimal free resolution of I_{Δ}^{\vee} is linear in the first r steps.

向下 イヨト イヨト

Sara Saeedi Madani (joint with Dariush Kiani) Path ideals of graphs

It is known that

$$C_n$$
 is unmixed $\iff n = 3, 4, 5 \text{ or } 7.$

<ロ> <同> <同> <同> < 回>

- < ∃ →

臣

Sara Saeedi Madani (joint with Dariush Kiani) Path ideals of graphs

Theorem

Let $t \ge 3$. Then $I_t(C_n)$ is unmixed if and only if n = 2t + 1 or $t \le n \le \lfloor 3t/2 \rfloor + 1$.

(4回) (4回) (4回)

Francisco -Van Tuyl

Let $n \ge 3$. Then C_n is (sequentially) Cohen-Macaulay if and only if n = 3 or 5.

æ

- ∢ ≣ ▶

< 🗇 > < 🖃 >

Theorem

Let $t \ge 2$. Then $R/I_t(C_n)$ is Cohen-Macaulay if and only if n = t or t + 1 or 2t + 1.

・日・ ・ヨ・ ・ヨ・

æ

Sara Saeedi Madani (joint with Dariush Kiani) Path ideals of graphs

Haghighi et al.

One has C_n is S_2 if and only if n = 3, 5 or 7.

Haghighi et al.

For $r \ge 3$, C_n is S_r if and only if n = 3 or 5.

イロン イヨン イヨン イヨン

Haghighi et al.

One has C_n is S_2 if and only if n = 3, 5 or 7.

Haghighi et al.

For $r \ge 3$, C_n is S_r if and only if n = 3 or 5.

Theorem

Let $3 \le t \le n$ and $r \ge 2$. Then $R/I_t(C_n)$ is S_r if and only if it is Cohen-Macaulay or $\lceil \frac{n}{n-t-1} \rceil \ge r+3$.

<回と < 回と < 回と

Path ideals of trees

<回> < 回> < 回> < 回>

臣

Francisco -Van tuyl

If G is a tree, then G is sequentially Cohen-Macaulay.

He -Van tuyl

Let G be a directed tree and $t \ge 2$. Then $R/I_t(G)$ is sequentially Cohen-Macaulay.

æ

-≣->

Theorem

Let I be a squarefree monomial ideal in R. Then R/I is Cohen-Macaulay if and only if R/I is sequentially Cohen-Macaulay and I is unmixed.

Haghighi et al.

Let I be a squarefree monomial ideal in R. Then R/I is S_r if and only if R/I is sequentially S_r and I is unmixed.

白 ト イヨ ト イヨト

The clique complex of a finite graph G is the simplicial complex $\Delta(G)$ whose faces are the cliques of G.

Herzog et al

Let G be a chordal graph on the vertex set V. Let F_1, \ldots, F_m be the facets of $\Delta(G)$ which admit a free vertex. Then the following conditions are equivalent:

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

- (i) G is Cohen-Macaulay.
- (ii) G is unmixed.

(iii) V is the disjoint union of F_1, \ldots, F_m .

The clique complex of a finite graph G is the simplicial complex $\Delta(G)$ whose faces are the cliques of G.

Herzog et al.

Let G be a chordal graph on the vertex set V. Let F_1, \ldots, F_m be the facets of $\Delta(G)$ which admit a free vertex. Then the following conditions are equivalent:

- (i) G is Cohen-Macaulay.
- (ii) G is unmixed.

(iii) V is the disjoint union of F_1, \ldots, F_m .

level(v) :=the length of the unique path starting at the root and ending at v minus one.

Note that by removing leaves at level strictly less than (t-1) from a tree Γ and repeating this process, one obtains a tree denoted by $C(\Gamma)$. This process is called cleaning process and the tree $C(\Gamma)$ is called the clean form of Γ . level(v) := the length of the unique path starting at the root and ending at v minus one.

Note that by removing leaves at level strictly less than (t-1) from a tree Γ and repeating this process, one obtains a tree denoted by $C(\Gamma)$. This process is called cleaning process and the tree $C(\Gamma)$ is called the clean form of Γ .

Let Γ be a tree over *n* vertices and $2 \le t \le n$. Suppose that F_1, \ldots, F_m are all facets of $\Delta = \Delta_t(C(\Gamma))$ containing a leaf of $C(\Gamma)$ such that each leaf belongs to exactly one of them. If $V(\Delta)$ is the disjoint union of F_1, \ldots, F_m , then we say that Γ is t-partitioned (by F_1, \ldots, F_m).

向下 イヨト イヨト

Let Γ be a t-partitioned tree (by F_1, \ldots, F_m). We define a t-branch of Γ , as a path of length t + 1, say P, which starts at a vertex of some F_i , like x, and $P \cap F_i = \{x\}$. Then, for each $i = 1, \ldots, m$, we define degree of F_i , as

 $\text{Deg}_{\Gamma}(F_i) :=$ the number of vertices of F_i which are the first vertices of a t-branch of Γ .

We define degree of Γ , as

 $\mathrm{Deg}(\Gamma) := \max\{\mathrm{Deg}_{\Gamma}(F_i) \ : \ 1 \leq i \leq m\}.$

個 と く ヨ と く ヨ と

Let Γ be a t-partitioned tree (by F_1, \ldots, F_m). We define a t-branch of Γ , as a path of length t + 1, say P, which starts at a vertex of some F_i , like x, and $P \cap F_i = \{x\}$. Then, for each $i = 1, \ldots, m$, we define degree of F_i , as

 $\text{Deg}_{\Gamma}(F_i) :=$ the number of vertices of F_i which are the first vertices of a t-branch of Γ .

We define degree of Γ , as

 $\mathrm{Deg}(\Gamma) := \max\{\mathrm{Deg}_{\Gamma}(F_i) : 1 \leq i \leq m\}.$

同 と く ヨ と く ヨ と

We call a t-branch of Γ , initial if it intersects some F_i in the first vertex of F_i . Otherwise, we call it non-initial.

We define level of a t-branch P of Γ , denoted by level(P), as the level of the vertex x, where $P \cap F_i = \{x\}$ for some i = 1, ..., m.

We call a t-branch of Γ , initial if it intersects some F_i in the first vertex of F_i . Otherwise, we call it non-initial.

We define level of a t-branch *P* of Γ , denoted by level(*P*), as the level of the vertex *x*, where $P \cap F_i = \{x\}$ for some i = 1, ..., m.

Let Γ be a t-partitioned tree over *n* vertices and $2 \le t \le n$. We say that Γ is fitting t-partitioned, if the following hold:

高 と く ヨ と く ヨ と

(1) $Deg(\Gamma) \le 1$; and (2) $level(P) \le t - 1$, for each non-initial t-branch P of Γ .

Path ideals of trees

 Γ_1 is fitting 3-partitioned by $F_1 = \{v_1, v_4, v_7\}$, $F_2 = \{v_2, v_5, v_8\}$ and $F_3 = \{v_6, v_9, v_{10}\}$. We have $\text{Deg}(\Gamma_1) = 1$.

Path ideals of trees

Γ_2 is 3 – partitioned but not fitting 3 – partitioned.

≣ >

Theorem

Let Γ be a tree over *n* vertices and $2 \le t \le n$. Then the following conditions are equivalent: (i) $I_t(\Gamma)$ is unmixed. (ii) $R/I_t(\Gamma)$ is Cohen-Macaulay. (iii) $R/I_t(\Gamma)$ is S_r . (iv) Γ is fitting t-partitioned.

Herzog et al.

Let G be a chordal graph. Then G is Gorenstein, if and only if G is a disjoint union of edges.

Theorem

Let Γ be a tree over *n* vertices and $2 \le t \le n$. Then $R/I_t(\Gamma)$ is Gorenstein if and only if $C(\Gamma)$ is L_t .

・日・ ・ ヨ ・ ・ ヨ ・

æ

Sara Saeedi Madani (joint with Dariush Kiani) Path ideals of graphs

Thanks for your attention.

・ロト ・回ト ・ヨト ・ヨト