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Simplicial complexes

A simplicial complex on the vertex set V is a collection A of
subsets of V such that if F € A and G C F, then G € A.
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A simplicial complex on the vertex set V is a collection A of
subsets of V such that if F € A and G C F, then G € A.

Each element of A is called a face and maximal faces (under
inclusion) are called facets of A.
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Simplicial complexes

A simplicial complex on the vertex set V is a collection A of
subsets of V such that if F € A and G C F, then G € A.

Each element of A is called a face and maximal faces (under
inclusion) are called facets of A.

For F € A, dimension of F is defined as dim(F) = |F| — 1 and

dim(A) = max{dim(F) : F € A}.

Sara Saeedi Madani (joint with Dariush Kiani) Path ideals of graphs



Simplicial complexes

A simplicial complex on the vertex set V is a collection A of
subsets of V such that if F € A and G C F, then G € A.

Each element of A is called a face and maximal faces (under
inclusion) are called facets of A.

For F € A, dimension of F is defined as dim(F) = |F| — 1 and

dim(A) = max{dim(F) : F € A}.

We say that A is pure if all its facets have the same dimension.
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Simplicial complexes

A vertex cover of A is a subset A of V, with the property that for
every facet F; there is a vertex x; € A such that x; € F;.

A minimal vertex cover of A is a subset A of V such that Ais a
vertex cover and no proper subset of A is a vertex cover of A.

The smallest cardinality of a minimal vertex cover of A is called
the vertex covering number of A.
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Simplicial complexes

A vertex cover of A is a subset A of V, with the property that for
every facet F; there is a vertex x; € A such that x; € F;.

A minimal vertex cover of A is a subset A of V such that Ais a
vertex cover and no proper subset of A is a vertex cover of A.

The smallest cardinality of a minimal vertex cover of A is called
the vertex covering number of A.

A simplicial complex A is unmixed if all of its minimal vertex
covers have the same cardinality.
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Stanley-Reisner rings

Let R = k[x1,...,xn]|, where k is a field.
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Stanley-Reisner rings

Let R = k[x1,...,xn]|, where k is a field.

For a simplicial complex A with vertex set {x1,...,x,}, the
Stanley-Reisner ideal of A is defined as:

In=(]]x:F¢n).

xeF

Let A = ({x1,x2,xa}, {x2,x3}, {x3,xa}), then

In = (xex3xa,x1x3) C k[x1,...,xa]
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Stanley-Reisner rings

Let R = k[x1,...,xn]|, where k is a field.

For a simplicial complex A with vertex set {x1,...,x,}, the
Stanley-Reisner ideal of A is defined as:

In=(]]x:F¢n).

xeF

Let A = ({x1,x2,xa}, {x2,x3}, {x3,xa}), then

In = (xex3xa,x1x3) C k[x1,...,xa]

Stanley-Reisner ring associated to A : k[A] = R/Ia
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Facet ideals

The facet ideal of A is

I(A) = (H x: F is a facet of A).
x€eF
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Facet ideals

The facet ideal of A is

I(A) = (Hx : F is a facet of A).
x€eF

Let A = ({x1,x2,xa}, {x2,x3}, {x3,xa}), then

I(A) = (x1x2xa, X2x3,x3Xa) C K[x1, ..., xa].
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Facet ideals

For a squarefree monomial ideal / = (M, ..., Mg) we define §£(/)
to be the simplicial complex over a set of vertices {vi, ..., vy} with
facets Fy, ..., Fq, where for each i, F; = {v; : x;|M;,1 <j < n}.
We call §£(/) the facet complex of /.
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Facet ideals

For a squarefree monomial ideal / = (M, ..., Mg) we define §£(/)
to be the simplicial complex over a set of vertices {vi, ..., vy} with
facets Fy, ..., Fq, where for each i, F; = {v; : x;|M;,1 <j < n}.
We call §£(/) the facet complex of /.

For a squarefree monomial ideal /, we have

ht(l) = vertex covering number of §£(I).
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Edge ideals

Let G = (V, E) be a finite simple graph with vertex set
V ={x1,...,x,} and edge set E.
Associated to G is a monomial ideal

I(G) = (xix; : {xi, x;} € E),

called the edge ideal of G.
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Edge ideals

1(G) = (x1x2, X2X3, X3X4, X4X5, X5X1)-
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Path ideals

Let G = (V, E) be a directed graph with vertex set
V = {x1,...,x,} and edge set E. Fix an integer 2 < t < n.
Associated to G is a monomial ideal

I:(G) = (X« X,  Xiyy .., X, is a path of length t in G),

called the path ideal of G.
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Path ideals

Let G = (V, E) be a directed graph with vertex set
V = {x1,...,x,} and edge set E. Fix an integer 2 < t < n.
Associated to G is a monomial ideal

I:(G) = (X« X,  Xiyy .., X, is a path of length t in G),

called the path ideal of G.

We have h(G) = I(G). So It(G) is sometimes called the
generalized edge ideal of G.
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Path ideals

B(G) = (x1X3X6, X1X2X4, X2X4X7, X1 X2 X5, X2X5X3).
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Path ideals

For a directed graph G, the simplicial complex A:(G) is defined to
be

A(G) = ({viy,. -, Vi, } 1 Vi, ...,V is a path of length t in G).
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Path ideals

For a directed graph G, the simplicial complex A:(G) is defined to
be

A(G) = ({viy,. -, Vi, } 1 Vi, ...,V is a path of length t in G).

So, we have
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Some algebraic preliminaries

A finitely generated graded module M over R is said to satisfy the
Serre's condition S, if depth Mp >min(r, dim Mp), for all
P € Spec(R).
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Some algebraic preliminaries

A graded R-module M is called sequentially Cohen-Macaulay (resp.
S;) (over k) if there exists a finite filtration of graded R-modules

O=MycMyC---CM,=M

such that each M;/M;_; is Cohen-Macaulay (resp. S,), and the
Krull dimensions of the quotients are increasing:

dim(My/Mo) < dim(Ma/My) < -+ < dim(M,/M,_1)
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Some algebraic preliminaries

Suppose that / is a homogeneous ideal of R whose generators all
have degree d. Then | has a linear resolution if for all i > 0,
Bij(I) =0 for all j #i+d.
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Some algebraic preliminaries

Let / be a squarefree monomial ideal. The Alexander dual of
I = (X110 Xi,85---5Xe,1° - Xt,5.) IS the ideal

IV = (X115 X0s) M N (Xe 1y ooy Xeys,)-
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Some algebraic preliminaries

Yanagawa-Terai

Let r > 2. A simplicial complex A is S, if and only if the minimal
free resolution of /X is linear in the first r steps.
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Path ideals of cycles

It is known that

C, is unmixed <= n=3, 4, 5 or 7.
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Path ideals of cycles

Let t > 3. Then I;(C,) is unmixed if and only if n =2t 41 or
t<n<|3t/2] +1.
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Path ideals of cycles

Francisco -Van Tuyl

Let n > 3. Then C, is (sequentially) Cohen-Macaulay if and only if
n=3orb.
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Path ideals of cycles

Let t > 2. Then R/I:(C,) is Cohen-Macaulay if and only if n =t
ort+1or2t+1.
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Path ideals of cycles

Haghighi et al.

One has C, is S if and only if n=3,5 or 7.
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Path ideals of cycles

Haghighi et al.
One has C, is Sy if and only if n=3,5 or 7.

—

Haghighi et al.

For r >3, C,is S, if and only if n =3 or 5.
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Path ideals of cycles

Let 3<t<nandr>2 Then R/I(C,) is S, if and only if it is
Cohen-Macaulay or [—j—1] > r+3.
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Path ideals of trees
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Path ideals of trees

Francisco -Van tuyl
If G is a tree, then G is sequentially Cohen-Macaulay.
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Path ideals of trees

Let G be a directed tree and t > 2. Then R/I(G) is sequentially
Cohen-Macaulay.
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Path ideals of trees

Let / be a squarefree monomial ideal in R. Then R// is
Cohen-Macaulay if and only if R/l is sequentially Cohen-Macaulay
and / is unmixed.
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Path ideals of trees

Haghighi et al.

Let / be a squarefree monomial ideal in R. Then R// is S, if and
only if R/l is sequentially S, and / is unmixed.
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Path ideals of trees

The clique complex of a finite graph G is the simplicial complex
A(G) whose faces are the cliques of G.
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Path ideals of trees

The clique complex of a finite graph G is the simplicial complex
A(G) whose faces are the cliques of G.

Herzog et al.

Let G be a chordal graph on the vertex set V. Let Fq,..., F, be
the facets of A(G) which admit a free vertex. Then the following
conditions are equivalent:

(i) G is Cohen-Macaulay.

(i) G is unmixed.

(iii) V is the disjoint union of Fq,..., Fp,.
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Path ideals of trees

level(v) :=the length of the unique path starting at the root and
ending at v minus one.
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Path ideals of trees

level(v) :=the length of the unique path starting at the root and
ending at v minus one.

Note that by removing leaves at level strictly less than (t — 1) from
a tree I and repeating this process, one obtains a tree denoted by

C(I"). This process is called cleaning process and the tree C(I') is

called the clean form of T.
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Path ideals of trees

Let I be a tree over n vertices and 2 < t < n. Suppose that
Fi,...,Fmy are all facets of A = A:(C(I")) containing a leaf of
C(I) such that each leaf belongs to exactly one of them. If V(A)
is the disjoint union of Fy,..., Fp,, then we say that I is
t-partitioned (by F1,...,Fm).
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Path ideals of trees

Let I' be a t-partitioned tree (by Fi,...,Fn). We define a t-branch
of I, as a path of length t + 1, say P, which starts at a vertex of
some F;, like x, and PN F; = {x}. Then, for each i=1,...,m,
we define degree of F;, as

Degp(F;) :=the number of vertices of F; which are the first
vertices of a t-branch of I".
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Path ideals of trees

Let I' be a t-partitioned tree (by Fi,...,Fn). We define a t-branch
of I, as a path of length t + 1, say P, which starts at a vertex of
some F;, like x, and PN F; = {x}. Then, for each i=1,...,m,
we define degree of F;, as

Degp(F;) :=the number of vertices of F; which are the first
vertices of a t-branch of I".

We define degree of I, as

Deg(l") := max{Degr(F;) : 1 <i<m}.
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Path ideals of trees

We call a t-branch of T, initial if it intersects some F; in the first
vertex of F;. Otherwise, we call it non-initial.
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Path ideals of trees

We call a t-branch of T, initial if it intersects some F; in the first
vertex of F;. Otherwise, we call it non-initial.

We define level of a t-branch P of I', denoted by level(P), as the
level of the vertex x, where PN F; = {x} for some i =1,...,m.
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Path ideals of trees

Let [ be a t-partitioned tree over n vertices and 2 < t < n. We say
that I is fitting t-partitioned, if the following hold:

(1) Deg(l') <1, and

(2) level(P) < t — 1, for each non-initial t-branch P of T.
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Path ideals of trees

Iy is fitting 3-partitioned by F1 = {v1, va,v7}, Fo = {v2, vs, v}
and F3 = {V6, Vo, VIO}- We have Deg(rl) =1
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Path ideals of trees

> is 3 — partitioned but not fitting 3 — partitioned.
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Path ideals of trees

Theorem

Let [ be a tree over n vertices and 2 < t < n. Then the following
conditions are equivalent:

(i) 1¢(T') is unmixed.

(ii) R/I:(I") is Cohen-Macaulay.

(iii) R/1(T) is S,.

(iv) T is fitting t-partitioned.
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Path ideals of trees

Herzog et al.

Let G be a chordal graph. Then G is Gorenstein, if and only if G is
a disjoint union of edges.
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Path ideals of trees

Let ' be a tree over n vertices and 2 < t < n. Then R/I(I) is
Gorenstein if and only if C(I') is L.
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Thanks for your attention.
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