The 12th Seminar on Commutative Algebra and Related Topics, November 11 and 12, 2015 School of Mathematics, IPM, Tehran

Covering Techniques in Representation Theory Razieh Vahed IPM

Iran

Covering techniques in representation theory have become important after the work of Bongartz-Gabriel [BG], Gabriel [G] and Riedtmann [Ri]. In fact, at first Riedtmann [Ri] introduce coverings of the Auslander-Reiten quiver Γ_{Λ} of a representation-finite algebra Λ . Bongartz and Gabriel [BG] developed this notion to provide concrete algorithms which enable us to construct the Auslander-Reiten quivers for plenty of algebras.

Let \Bbbk be a field and G be a group. In [G] Gabriel introduced the notion of Galois covering of locally bounded \Bbbk -categories with a G-action, to present a technique for the computation of the indecomposable modules over a representation-finite algebra.

Locally bounded G-categories have been well investigated in connection with a socalled covering technique in representation theory of algebras, see [G]. The orbit category \mathcal{C}/G and the canonical functor $P: \mathcal{C} \longrightarrow \mathcal{C}/G$ are naturally constructed from these data, and one studies relationships between Mod- \mathcal{C} and Mod- (\mathcal{C}/G) .

One of the most important results in this theory is the following theorem which is proved by Gabriel [G] and then completed by Martinez and De le Peña [MD]:

Theorem. let \mathcal{C} be a locally bounded k-category over an algebraically closed field k and let a group G act freely on \mathcal{C} . Then \mathcal{C} is locally representation-finite if and only if \mathcal{C}/G is so. In this case the push-down functor $P_{\cdot} : \operatorname{Mod}\nolimits - \mathcal{C} \longrightarrow \operatorname{Mod}\nolimits - (\mathcal{C}/G)$ associated with the Galois covering $P : \mathcal{C} \longrightarrow \mathcal{C}/G$ induces a bijection between the G-orbits of isomorphism classes of finitely generated indecomposable \mathcal{C} -modules and the isomorphism classes of finitely generated indecomposable \mathcal{C}/G -modules.

Asashiba in [As] generalized the covering technique for an arbitrary k-categories with a G-action to apply covering techniques to usual additive categories such as the homotopy category $\mathbb{K}(\Pr j-\mathcal{C})$ of projectives. Using this generalization, we plan to extend the above theorem for algebras of finite Cohen-Macaulay type.

This talk is based on a joint work with H. Asashiba and R. Hafezi.

References

[As] H. ASASHIBA, A generalization of Gabriels Galois covering functors and derived equivalences, J. Algebra **334** (2011), 109-149.

- [BG] K. BONGARTZ AND P. GABRIEL, Covering spaces in representation theory, Invent. Math. 65 (1982) 331-378.
- [G] P. GABRIEL, The universal cover of a representation-finite algebra, in: Lecture Notes in Math., vol. **903**, Springer-Verlag, Berlin/New York, 1981, 68-105.
- [MD] R. MARTINEZ, J. A. DE LE PEÑA, Automorphisms of representation-finite algebras, Invent. Math. **72** (1983), 359-362.
- [Ri] C. RIEDTMANN, Algebren, Darstellungskocher, Uberlagerungen und zuruck, Comment. Math. Helv. 55 (1980) 199-224.