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In 1987 Hibi introduced a class of K-algebras which nowadays are
called Hibi rings.

Fix a field K and let L be a distributive lattice. The Hibi ring K[L]
is the K-algebra generated over K by the elements o € L with
defining relations

af=(aNpB)(aVp)witha,feL
Hibi: K[L] is an ASL and a normal Cohen—-Macaulay domain.

Furthermore, the defining ideal of a Hibi ring has a quadratic
Grobner basis and hence is a Koszul algebra.
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K[L] is Gorenstein if and only if P is pure (that is, all maximal

chains in P have the same length).
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Alternatively, the Hibi ring of L has a presentation

K[L] :K[{sHtp: acl}]cCT,
pEQ

where T = K[s,{t, | p € P}] is the polynomial ring in the
variables s and tp.

Let P be the poset obtained from P by adding the elements —oo
and oo with co > p and —oo < p for all p € P.

We denote by 7(P) the set of integer valued functions
v: PN

with v(co0) = 0 and v(p) < v(q) for all p > q.

These are the strictly order reversing functions on P.






By using a result of Richard Stanley, Hibi showed that the
monomials
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By using a result of Richard Stanley, Hibi showed that the
monomials
sv(=) H t},/(p), veT(P)

peP
form a K-basis of canonical module w.
Let J; denote the defining ideal of the Hibi ring K|[L].

Theorem. (Ene, H, Saeedi Madani) Let L be a finite distributive
lattice and P the poset of join irreducible elements of L. Then

reg Ji = |P| — rank P.
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Hibi ideals and isotone maps
In 2005 H-Hibi introduced the ideal:

b=l : @<!(P).

pEa  pda

Theorem. The Alexander dual 1§ of Ip is the edge ideal of a
Cohen—Macaulay bipartite graph. Moreover, the edge ideal of any
Cohen—Macaulay bipartite graph is of this form.

X1 X2 X3 X4

i Y2 y3 ya
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Let P be the category of finite posets.
» Objects: finite posets

» Morphisms: isotone maps (i.e. order preserving maps)
v : P — Q is isotone, if p(p) < ¢(p) for all p < p'.

Hom(P, Q), the set of isotone maps from P to Q, is itself a poset.
We denote by [n] the totally ordered poset {1 <2 < ---<n}onn
elements. Then

I(P) ~ Hom(P,[2])

Now the theorem of Birkhoff, can be rephrased as follows: Let P
be the subposet of join irreducible elements of the distributive
lattice L. Then

L ~ Hom(P,[2])
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2014 Flgystad, H, Greve introduced in " Letterplace and
Co-letterplace ideals of posets” the ideals

L(P,Q) = (I xo.0(0) : ¢ € Hom(P,Q))
peP
L(P,[2]) is the ideal Ip considered before.

L(P,[n]) is the generalized Hibi ideal, introduced 2011 (European
J.Comb.) by Ene, H, Mohammadi.
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Theorem. (Ene, H, Mohammadi) L(P, [n])Y = L([n], P)", where T
denotes the switch of indices.

Does a similar statement hold for any P and Q7 No!

Let P be a finite poset. We define the graph G(P) on the vertex
set P.

A subset {p1, p2} is an edge of G(P) if and only if py covers p;.

This graph is the underlying graph of the so-called Hasse diagram
of P which may also be viewed as a directed graph whose edges
are (p1, p2) where pp covers p;.

We say that P is connected if G(P) is connected.

P is (co)-rooted if for all incomparable p1, po € P there is no
p € P with p> p1,p2 (p < p1,p2).






Theorem. (H, Shikama, Qureshi) L(P, Q)Y = L(Q, P)" if and
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hold:
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(c) P is connected and Q is a disjoint union of chains;
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Q is connected and P is a disjoint union of chains;
P or @ is a chain.



Theorem. (H, Shikama, Qureshi) L(P, Q)Y = L(Q, P)" if and
only if P or Q is connected and one of the following conditions
hold:

(a) Both, P and Q are rooted;

(b) Both, P and @ are co-rooted,;

(c) P is connected and Q is a disjoint union of chains;
(
(

d

(S

Q is connected and P is a disjoint union of chains;

)
)
)
) Por Q is a chain.

In the recent paper " Algebraic properties of ideals of poset
homomorphisms” Juhnke-Kubitzke, Katthan and Saeedi Madani
show for a large subclasses of the ideals L(P, Q) when they are
Buchsbaum, Cohen-Macaulay, Gorenstein and when they have a

linear resolution.
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As noted in the paper by Flgystad, H, Greve, the ideals L(P, Q)
specialize to many well-known ideals. For example

> Let / be the initial ideal of the ideal of s-minors of an
(n+s—1) x (m+ s — 1)-matrix of indeterminates. Then [ is
obtained from L([s],[m] x [n]) by reduction modulo a regular
sequence which identifies variables.

» A similar statement holds for the initial ideal of 2-minors of a
symmetric matrix, and of the initial ideal of a ladder
determinantal ideal.

» Ferrers ideals by Nagel and Reiner.

» Strongly stable ideals.
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The operation which is inverse to specialization is called separation.

Flgystad introduced this notion in his paper " Cellular resolutions of
Cohen—Macaulay monomial ideals” (2009)

A typical example of separation is polarization. A monomial ideal
is called inseparable if it admits no separation.

Theorem. (a) (Flgystad, H, Greve) Any monomial ideal /
generated by a subset of the monomial generators of L(P, Q) is
inseparable.

(b) (Altmann, Bigdeli, H, Dancheng Lu) The ideals L(P, Q) are
rigid if and only if no two elements of P are comparable.

An inseparable monomial ideal I which specializes to monomial
ideal J is called a separated model of J. So the ideals L(P, Q) are
separated models of many monomial ideals.
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The K-algebra K[P, Q]

We denote by K[P, Q] the toric ring generated over K by the
monomial generators of L(P, @), and call it an isotonian algebra.

K[P,[2]] is the classical Hibi ring. Its Krull dimension is rank P + 1.
What is the Krull dimension of K[P, Q]?

Theorem. (Bigdeli, Hibi, H, Shikama, Qureshi) Let P and Q be
finite posets. Then dim K[P, Q] = |P|(|Q| —s) + rs — r + 1, where
r is the number of connected components of P and s is the
number of connected components of Q.
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As mentioned before, the Hibi ring K[P, [2]] is a normal
Cohen—Macaulay domain.

Conjecture. Isotonian algebras are normal Cohen—Macaulay
domains.

Theorem. (Bigdeli, Hibi, H, Shikama, Qureshi) Assume G(P) is a
forest or @ = [n]. Then K[P, Q] is a normal Cohen-Macaulay
domain.

Conjecture. For any poset P and Q, the defining ideal of the
K-algebra K[P, Q] has a squarefree initial ideal.

Assuming the conjecture is true, the algebras K[P, Q] are all
normal by a theorem of Sturmfels, and then by a theorem of
Hochster they are also Cohen-Macaulay.
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The conjecture is known to be true in the following cases
» Classical Hibi rings.

» K[[2], P] is the edge ring of a bipartite graph. The binomials
corresponding to the cycles of the graph form a Grobner basis.
These generators have a squarefree initial ideal.

» Q= [n].

Theorem. (Bigdeli, Hibi, H, Shikama, Qureshi) Let P be the
chain and suppose that each connected component of @ is either
rooted or a co-rooted. Then the defining toric ideal of K[P, Q]
admits a quadratic Grobner basis and a squarefree initial ideal.
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