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Introduction

some notations

• C −→ a uniform d-dimensional clutter on [n] = {1, . . . ,n}, that is,
a family of (d + 1)-subsets of [n] called circuits of C.

• I = I(C) −→ circuit ideal of C = 〈xF |F ∈ C〉 in the ring
S = k [x1, . . . , xn], where xF =

∏
i∈F xi .

Note: I is a square free monomial ideal and every sq. free
monomial ideal is I(C) for some C (not necessarily uniform).

• C −→ d-complement of C = family of (d + 1)-subsets of [n] not in
C.

• simplicial complex on [n] −→ a family ∆ of subsets of [n] with:
A ⊆ B & B ∈ ∆⇒ A ∈ ∆.

• A clique of C −→ a subset of [n], all (d + 1)-subsets of which is in
C.

• ∆(C) = clique complex of the clutter C= the family of all cliques of
C.

• ∆|L = {F ∈ ∆|F ⊆ L}.
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Introduction

introduction

A question which has gained attention recently by many is:
When a graded ideal I of S has a linear resolution?

Polarization⇒ for monomial I reduces to sq. free monomial I
For more on this question and related concepts see
[Herzog, Hibi (2011)].

In the case of sq. free’s, a theorem of [Fröberg, 1990]: if d = 1 (that
is, when C is a graph), I(C) has a linear resolution ⇔ C is a chordal
graph (that is, a graph with no non-complete induced cycle).
Many have tried to generalize the concept of chordal graphs to
clutters of arbitrary dimension in a way that Fröberg’s theorem
remains true for d > 1.
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Literature review

chordal clutters

• submaximal circuits −→ SC(C) = d-subsets of circuits of C
(correspond to vertices in graphs). In the following e ∈ SC(C).

• deg(e) = number of circuits containing e.
• C− e −→ delete all circuits of C containing e.
• N[e] = e ∪ {v ∈ [n]|e ∪ {v} ∈ C}.

• simplicial submaximal circuit (SSC) −→ an e ∈ SC(C) for which
N[e] is a clique.

• chordal clutter (see [Morales, et al (2014)]) −→ a clutter C with a
sequence of SC’s e1, . . . ,et such that
ei ∈ SSC(C− e1 − · · · − ei−1) and C− e1 − · · · − et = ∅.

Theorem 1.1 ([Morales, et al (2014), Remark 3.10])

C chordal⇒ I(C) has a linear resolution over every field.
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Literature review

the converse?

The converse is not know to be true or not. Converse ⇔ : I(C) has
linear resolution, then SSC(C) 6= ∅.

In [Bigdeli, et al (2015)] and [Nikseresht, Zaare-Nahandi], is proved
that:

• If C is chordal in the sense of [Woodroofe, 2011] or
[Emtander, 2010], or if I(C) is sq. free stable, then it is chordal.

• If I(C) is polymatroidal, or if I(C) is the vertex cover ideal of a
Cohen-Macaulay graph, then SSC(C) 6= ∅.

So it’s reasonable to guess:
I(C) has a linear resolution over every field⇒ C is chordal?
or at least:
I(C) has linear quotients⇒ C is chordal?
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Research aims

aims of this research

In general the above two questions seem not to be easy. So we try to
reduce the questions to simpler cases. Indeed, our final goal in this
research is to reduce these questions to the case that C has no
cliques on more than d + 1 vertices.

To this end, we study the following clutter
C+ = F(∆(C)[d+1]) = all cliques of C on d + 2 vertices,

which we call the ascent of C.
Here we present some results on how the concepts of linear quot.,
linear res. and chordality behave under passing from C to C+.
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Ascension and linear resolution

linear resolution under ascension

Here H̃i (Γ; k) denotes the i ’th homology of the augmented oriented
chain complex of a simplicial complex Γ over a field k .

Proposition 2.1

The ideal I(C) has a linear resolution over a field k, ⇔ I(C+) has a
linear resolution over k and H̃d (∆(C)|W ; k) = 0 for all W ⊆ [n].

This result could be proved using the following theorem of Fröberg
[Fröberg, 1985] or could be proved independently and used as a
proof of Fröberg’s theorem.

Theorem 2.2 (Fröberg)

Suppose that ∆ = ∆(C). Then I∆ has a linear resolution over k, ⇔
H̃i (Γ; k) = 0 for every induced subcomplex Γ of ∆ and i ≥ d.
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Ascension and chordality

passing chordality to the ascent

Lemma 2.3

e ∈ SSC(C) with deg(e) > 1, v ∈ NC[e] \ e⇒ ev ∈ SSC(C+) .

Example 2.4

C −→ triangles in the following figure. C+ = {ABCG}.
ABC ∈ SSC(C+) but AB,AC,BC 6∈ SSC(C).

A
B

C

D

E F

G

Theorem 2.5

If C is chordal, then C+ is chordal.
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Ascension and chordality

d-chorded clutters

In [Connon, Faridi (2013)] a combinatorial condition (d-chorded)
equivalent to H̃d (∆(C)|W ;Z2) = 0 for all W ⊆ [n], is presented.

Lemma 2.6
The clutter C is d-chorded ⇔ for each D ⊆ C with the property that
degD(e) is even for all e ∈ SC(D), there is a family D1, . . . ,Dk of
cliques on (d + 2)-subsets of V (D) such that D = 4k

i=1Di .

In [Connon, Faridi (2015), Theorem 18], an equivalent combinatorial
condition for having linear resolution over field of char 2 is given. (2.1)
provides another proof of this Theorem.
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Ascension and chordality

deletion of simplicial circuits

Theorem 2.7

Suppose that C is d-chorded and F ∈ SSC(C+). Then C− F is
d-chorded.

Simplicial edge of G −→ v1v2 ∈ E(G) such that for
D = {v1, v2} ∪ (NG(v1) ∩ NG(v2)): |D| ≥ 3 and G[D] is a clique.

Corollary 2.8

If a graph G is chordal and e1, . . . ,et are a sequence of edges such
that ei is simplicial in Gi = G − e1 − · · · − ei−1, then Gt+1 is chordal
and if Gt+1 has no simplicial edge, then it is a tree.
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Ascension and linear quotients

linear quotients and ascension

Theorem 2.9

Assume that I(C) has linear quotients. Then I(C+) has linear
quotients. Moreover, if F ∈ SSC(C+), then both of the ideals
I(C+ − F ) and I(C− F ) have linear quotients.

Example 2.10

G −→ the following graph. Then G+ has a non-circuit ideal with linear
quotients and is chordal. F ∈ SSC(G+)⇒ G − F is chordal and has
non-circuit ideal with linear quotients. But G is not chordal.
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