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BACKGROUND

The graphs considered here will all be finite, simple graphs, that is, they will
have no double edges and no loops. Furthermore we assume that G has no isolated
vertices. The vertex set of G will be denoted V(&) and will be the set [n] =
{1,2,...,n}, unless otherwise stated. The set of edges of G we denote by E(G).

A subset F' C [n] is called a clique of G, if {i,j} € F(G) for all i,j € F with
i # j. The set of all cliques of GG is a simplicial complex, denoted A(G).

A subset C' C [n] is called a verter cover of G if C'N{z,j} # 0 for all edges {7, j}
of G

The graph G is called unmired if all minimal vertex covers of G have the same
cardinality.



A subset D C [n] is called an independent set of G if D contains no set {i,j}
which is an edge of G. Note that D is an independent set of GG if and only if [n]\ D
is a vertex cover. Thus the minimal vertex covers of G correspond to the maximal

independent sets of G. The cardinality of a maximal independent set is called the
independence number of G.

The graph G is called bipartite if V(G) is the disjoint union of Vj and V5 such
that V} and V; are independent sets.

The graph G is called chordal if each cvcle of G of length > 4 has a chord. A
eraph which has no cycle and which is connected is called a tree.

Let I C S be a squarefree monomial ideal. Then I = (L, P; where each of the
P; is a monomial prime ideal of I. The ideal /¥ which is minimally generated by
the monomials u; = [[,,cp, z; is called the Alerander dual of I. One has (1Y) = I.



2. VARIOUS CHARACTERIZATIONS OF BI-COHEN-MACAULAY GRAPHS

DEFINITION 2.1.

A simplicial complex A is called bi-Cohen-Macaulay (bi-CM), if A and its Alexan-
der dual AY are Cohen-Macaulay. This concept was introduced by Flgystad and
Vatne.

Given a field K and a simple graph on the vertex set [n] = {1,2,...,n}, one
associates with G the edge ideal I of GG, whose generators are the monomials x;x;
with {7, j} an edge of G. We say that G is bi-CM if the simplicial complex whose
Stanley-Reisner ideal coincides with I is bi-CM, that is, I; as well as the Alexander
dual (I)Y of I is a Cohen-Macaulay ideal.

RECALL:

An ideal I in a polynomial ring S over a field K have a linear resolution if S/ has
a minimal free resolution such that for all 7 > 1 the nonzero entries of the matrices
of the maps S% — S%-1 are of degree 1.

EAGON-REINER THEOREM:

I is a Cohen-Macaulay ideal if and only if Y has a linear resolution. Thus [ is
bi-CM if and only if I is a Cohen-Macaulay ideal with linear resolution.



PROPOSITION 2.1 Let K be an infinite field and G a graph on the vertex set [n]
with independence number c. The following conditions are equivalent:
(a) G is a bi-CM graph over K ;
(b) G is a CM graph over K, and S/1gs modulo a marimal reqular sequence of
linear forms is isomorphic to T /mZ% where T is the polynomial ring over K
in n — ¢ variables and my is the graded mazrimal ideal of T'.

COROLLARY 2.2

Let G be a graph on the vertex set [n| with independence number c.

The following conditions are equivalent:
(a) G is a bi-CM graph over K ;
(b) G is a CM graph over K and |E(G)| = (”_;‘“);
(c) G is a CM graph over K and the number of minimal verter covers of G is
equal ton —e+1;
(d) Billa) = (i+1)("73") fori=0,...n—c—1,
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G is a bi-CM graph over K if and only if (/5)Y the vertex cover ideal of GG is a

codimension 2 Cohen-Macaulay ideal with linear relations.




3. THE CLASSIFICATION OF BIPARTITE AND CHORDAL BI-CM GRAPHS

THEOREM 3.1 Let G be a bipartite graph on the verter set V with bipartition
Vi=ViuVy where Vi = {vy,...,v,} and Vo, = {wy, ..., w,}. Then the follow-
ing conditions are equivalent:

(a) G is a bi-CM graph;
(b) n=m and E(G) = {{v;,w;}: 1 <i < j < n}.




The following picture shows a bi-CM bipartite graph for n = 4.

FIGURE 1. A bi-CM bipartite graph.



THEOREM 3.2. Let G be a chordal graph on the verter set [n]. The following con-
ditions are equivalent:
(a) G is a bi-CM graph;
(b) Let Fy,..., F,, be the facets of the clique complexr of G. Then m =1,
orm > 1 and
(i) V(G) =V(F)UV(Fy)U...UV(F,,), and this union is disjoint;

(ii) each F; has eractly one free verter j;;

(iii) the restriction of G to [n]\ {j1,. .., m} is a clique.




Let G be a chordal bi-CM graph as in Theorem 3.2(b) with m > 1. We call the

complete graph G which is the restriction of G to [n]\ {j1,. .., jm} the center of G.

The following picture shows, up to isomorphism, all bi-CM chordal graphs whose
center is the complete graph A, on 4 vertices:

X <X
<D <



4. GENERIC BI-CM GRAPHS
EXAMPLE 4.1. Consider the bi-CM graph G on the vertex set [5] and edges {1, 2}

{2,3}, {3,1}, {2,4}, {3,4}, {4,5} as displayed in Figure 3.

Ficure 3



The ideal J = I} is generated by 1y = o231y, Uy = F1X32y, Uz = ToX3x5 and
1y = T1To1y. Because J has a linear resolution, the generating relations of .J may be
chosen all of the form xu; — 2u; = 0. This implies that in each row of the relation
matrix there are exactly two non-zero entries (which are variables with different
signs). We call such relations, relations of binomial type.

The relation matrices with respect to uy, ug, us and w4 are the matrices

ry —Io 0 0

Al = | Ty 0 — Ty 0 s
i 0 0 —I9

and

I —Io 0 0

Ag = | Iy 0 — Iy ()
0 I 0 —Ta



One assigns to the relation matrix A the following graph T': {i,j} is said to be
an edge of I' if and only if some row of A has non-zero entries for the ith- and
jth-component,

Note that I' is a tree. This tree is in general not uniquely determined bv G.

The relation tree of A4, is

L3
. I o
€Ty i X2
FIGURE 4
while the relation tree of A, is
. P P °
I3 Nig) €I XLy

FIGURE 5



For any given tree T" on the vertex set [m] = {1,...,m} with edges ey, ..., e, _;

the (m — 1) x m-matrix Ap whose entries ag; are defined as follows: we assign to
the kth edge e = {i,j} of T" with i < j the kth row of Az by setting

(1) (g = _:I:j:rlw lf g — .j:
0, otherwise.

The matrix A7 is called the generic matriz attached to the tree T

Let T} and T3 be the relation trees of A; and A,, respectively. Then the generic
matrices corresponding to these trees are

12 —ITa U U
B = | 213 0 —L31 0
T14 0 0 —T
and
12 —I U U

By=|ziz 0 —x3¢ 0
0 1y 0 —my



In order to describe the vertices and edges of Gr, let ¢ and 7 be any two vertices
of the tree T'. There exists a unique path P : 2 = ig,1,...,%. = 7 from i to 5. We
set b(i,7) = iy and call b(7, j) the begin of P, and set e(i,j) = 7,_; and call e(z, j)
the end of P.

Thus the vertex set of the graph G is given as

V(Gr) = {(i.]), (i) {i,j} is an edge of T}.
In particular, {(z, k), (7,1)} is an edge of G if and only if there exists a path P from
i to j such that k= b(i, j) and | = e(1,j).



The generic graphs corresponding to the trees T} and 75 are displayed in Figure 6.

L2

G, Gr,

FIGURE 6



By using Hilbert-Burch theorem we have

PROPOSITION 4.3.  For any tree T, the graph Gy is bi-CM.
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5. INSEPARABLE MODELS OF BI-CM CGRAPHS

Our aim is to give a classification of all bi-CM graphs up to separation.

Recall the concept of inseparability introduced by Flgystad, Greve and Herzog.

Let S = Klz,...,x, be the polynomial ring over the field K and I C S a
squarefree monomial ideal minimally generated by the monomials uy,. .., u,. Let y

be an indeterminate over S. A monomial ideal J C S[y| is called a separation of I
for the variable z; if the following holds:

(i) the ideal I is the image of J under the K-algebra homomorphism Sy| — S
with y — z; and z; — z; for all j;
(ii) x; as well as y divide some minimal generator of .J;
(iii) y — ; is a non-zero divisor of S{y|/.J.



We now apply these concepts to edge ideals. A separation of the graph G with
respect to the vertex i is a graph ' whose vertex set is [n]U{i'} having the property
that GG is obtained from G’ by identifying 2 with ¢ and such that z; — z; is a non-
zerodivisor modulo /. Algebraically, this identification amounts to say that S/ /5 =
(S"/ 1)/ (xy — x;)(S" /1), where S" = S[xy] and zy — z; is a non-zerodivisor of
S' /1. The algebraic condition on separation makes sure that the essential algebraic
and homological invariants of Is and Is are the same. In particular, G is bi-
CM if and only if ' is bi-CM. A graph which does not allow any separation is
called inseparable, and a inseparable graph which is obtained by a finite number of
separation steps from G is called a separable model of G.



EXAMPLE 5.1.

Let G be the triangle and G’ be the line graph displaved in Figure 7.

FIGURE 7. A triangle and its inseparable model

Then I = (x129, 21203, x274). Since Ass(Io) = {(x1,x2), (21, 24), (22, 23)}, it
follows that z, — x4 is a non-zero divisor on S/l where S = Kz, x9, 13, 14].
Moreover, (S'/Iq)/(x3 — x4)(S"/ 1) = S/I5. Therefore, the triangle in Figure 7
is obtained as a specialization from the line graph in Figure 7 by identifying the
vertices rs and x4,



We denote by G the complementary graph of the restriction Gy of G to
N(z) where N (i) = {j: {j,7} € E(G)} is the neighborhood of i. In other words,
V(GW) = N(i) and E(GW) = {{j, k}: j,k € N(i) and {j,k} € E(G)}. Note that
G is disconnected if and only if N(i) = AU B, where A, B# (), AN B = ) and all
vertices of A are adjacent to those of B.

Here we will need the following result of Altmann, Bigdeli, Herzog and Lu.

THEOREM 5.2 The following conditions are equivalent:

(a) The graph G is inseparable;
(b) G9 is connected for all i.



Our main result is the following. In fact, we establish a bijection between the set
of all trees and the set of inseparable bi-Cohen-Macaulay graphs.

THEOREM 5.3

(a) Let T be a tree. Then G is an inseparable bi-CM graph.

(b) For any inseparable bi-CM graph G, there exists a unique tree T such that
;= Gr.

(¢) Let G be any bi-CM graph. Then there exists a tree T such that G is an
inseparable model of G.
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