The 12th Seminar on

Commutative Algebra and Related Topics

IPM, November 11-12, 2015

Bi-Cohen-Macaulay graphs

Jürgen Herzog & Ahad Rahimi

Razi University

BACKGROUND

The graphs considered here will all be finite, simple graphs, that is, they will have no double edges and no loops. Furthermore we assume that G has no isolated vertices. The vertex set of G will be denoted V(G) and will be the set $[n] = \{1, 2, \ldots, n\}$, unless otherwise stated. The set of edges of G we denote by E(G).

A subset $F \subset [n]$ is called a *clique* of G, if $\{i, j\} \in E(G)$ for all $i, j \in F$ with $i \neq j$. The set of all cliques of G is a simplicial complex, denoted $\Delta(G)$.

A subset $C \subset [n]$ is called a *vertex cover* of G if $C \cap \{i, j\} \neq \emptyset$ for all edges $\{i, j\}$ of G.

The graph G is called unmixed if all minimal vertex covers of G have the same cardinality.

A subset $D \subset [n]$ is called an *independent set* of G if D contains no set $\{i,j\}$ which is an edge of G. Note that D is an independent set of G if and only if $[n] \setminus D$ is a vertex cover. Thus the minimal vertex covers of G correspond to the maximal independent sets of G. The cardinality of a maximal independent set is called the *independence number* of G.

The graph G is called *bipartite* if V(G) is the disjoint union of V_1 and V_2 such that V_1 and V_2 are independent sets.

The graph G is called *chordal* if each cycle of G of length ≥ 4 has a chord. A graph which has no cycle and which is connected is called a *tree*.

Let $I \subset S$ be a squarefree monomial ideal. Then $I = \bigcap_{j=1}^m P_j$ where each of the P_j is a monomial prime ideal of I. The ideal I^{\vee} which is minimally generated by the monomials $u_j = \prod_{x_i \in P_j} x_i$ is called the Alexander dual of I. One has $(I^{\vee})^{\vee} = I$.

2. Various Characterizations of Bi-Cohen-Macaulay graphs

DEFINITION 2.1.

A simplicial complex Δ is called *bi-Cohen-Macaulay* (bi-CM), if Δ and its Alexander dual Δ^{\vee} are Cohen-Macaulay. This concept was introduced by Fløystad and Vatne.

Given a field K and a simple graph on the vertex set $[n] = \{1, 2, ..., n\}$, one associates with G the edge ideal I_G of G, whose generators are the monomials $x_i x_j$ with $\{i, j\}$ an edge of G. We say that G is bi-CM if the simplicial complex whose Stanley-Reisner ideal coincides with I_G is bi-CM, that is, I_G as well as the Alexander dual $(I_G)^{\vee}$ of I_G is a Cohen-Macaulay ideal.

RECALL:

An ideal I in a polynomial ring S over a field K have a linear resolution if S/I has a minimal free resolution such that for all j > 1 the nonzero entries of the matrices of the maps $S^{\beta_j} \to S^{\beta_{j-1}}$ are of degree 1.

EAGON-REINER THEOREM:

I is a Cohen-Macaulay ideal if and only if I^{\vee} has a linear resolution. Thus I is bi-CM if and only if I is a Cohen-Macaulay ideal with linear resolution.

PROPOSITION 2.1 Let K be an infinite field and G a graph on the vertex set [n] with independence number c. The following conditions are equivalent:

- (a) G is a bi-CM graph over K;
- (b) G is a CM graph over K, and S/I_G modulo a maximal regular sequence of linear forms is isomorphic to T/m²_T where T is the polynomial ring over K in n − c variables and m_T is the graded maximal ideal of T.

COROLLARY 2.2

Let G be a graph on the vertex set [n] with independence number c.

The following conditions are equivalent:

- (a) G is a bi-CM graph over K;
- (b) G is a CM graph over K and $|E(G)| = {n-c+1 \choose 2}$;
- (c) G is a CM graph over K and the number of minimal vertex covers of G is equal to n-c+1;
- (d) $\beta_i(I_G) = (i+1)\binom{n-c+1}{i+2}$ for $i = 0, \dots, n-c-1$.

FACT 2.3

G is a bi-CM graph over K if and only if $(I_G)^{\vee}$ the vertex cover ideal of G is a codimension 2 Cohen-Macaulay ideal with linear relations.

3. The classification of bipartite and chordal bi-CM graphs

THEOREM 3.1 Let G be a bipartite graph on the vertex set V with bipartition $V = V_1 \cup V_2$ where $V_1 = \{v_1, \ldots, v_n\}$ and $V_2 = \{w_1, \ldots, w_m\}$. Then the following conditions are equivalent:

- (a) G is a bi-CM graph;
- (b) $n = m \text{ and } E(G) = \{\{v_i, w_j\}: 1 \le i \le j \le n\}.$

The following picture shows a bi-CM bipartite graph for n=4.

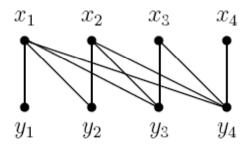


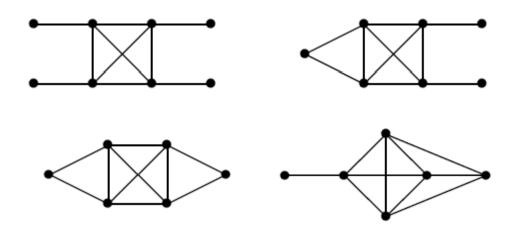
FIGURE 1. A bi-CM bipartite graph.

THEOREM 3.2. Let G be a chordal graph on the vertex set [n]. The following conditions are equivalent:

- (a) G is a bi-CM graph;
- (b) Let F_1, \ldots, F_m be the facets of the clique complex of G. Then m = 1, or m > 1 and
 - (i) $V(G) = V(F_1) \cup V(F_2) \cup ... \cup V(F_m)$, and this union is disjoint;
 - (ii) each F_i has exactly one free vertex j_i ;
 - (iii) the restriction of G to $[n] \setminus \{j_1, \ldots, j_m\}$ is a clique.

Let G be a chordal bi-CM graph as in Theorem 3.2(b) with m > 1. We call the complete graph G'' which is the restriction of G to $[n] \setminus \{j_1, \ldots, j_m\}$ the center of G.

The following picture shows, up to isomorphism, all bi-CM chordal graphs whose center is the complete graph K_4 on 4 vertices:



4. Generic Bi-CM graphs

EXAMPLE 4.1. Consider the bi-CM graph G on the vertex set [5] and edges $\{1, 2\}$ $\{2, 3\}$, $\{3, 1\}$, $\{2, 4\}$, $\{3, 4\}$, $\{4, 5\}$ as displayed in Figure 3.

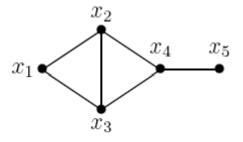


Figure 3

The ideal $J = I_G^{\vee}$ is generated by $u_1 = x_2x_3x_4$, $u_2 = x_1x_3x_4$, $u_3 = x_2x_3x_5$ and $u_4 = x_1x_2x_4$. Because J has a linear resolution, the generating relations of J may be chosen all of the form $x_ku_i - x_lu_j = 0$. This implies that in each row of the relation matrix there are exactly two non-zero entries (which are variables with different signs). We call such relations, relations of binomial type.

The relation matrices with respect to u_1, u_2, u_3 and u_4 are the matrices

$$A_1 = \begin{pmatrix} x_1 & -x_2 & 0 & 0 \\ x_5 & 0 & -x_4 & 0 \\ x_1 & 0 & 0 & -x_3 \end{pmatrix},$$

and

$$A_2 = \begin{pmatrix} x_1 & -x_2 & 0 & 0 \\ x_5 & 0 & -x_4 & 0 \\ 0 & x_2 & 0 & -x_3 \end{pmatrix}.$$

One assigns to the relation matrix A the following graph Γ : $\{i,j\}$ is said to be an edge of Γ if and only if some row of A has non-zero entries for the ith- and jth-component.

Note that Γ is a tree. This tree is in general not uniquely determined by G.

The relation tree of A_1 is

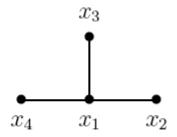


Figure 4

while the relation tree of A_2 is

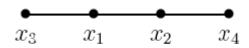


Figure 5

For any given tree T on the vertex set $[m] = \{1, \ldots, m\}$ with edges e_1, \ldots, e_{m-1} the $(m-1) \times m$ -matrix A_T whose entries a_{kl} are defined as follows: we assign to the kth edge $e_k = \{i, j\}$ of T with i < j the kth row of A_T by setting

(1)
$$a_{kl} = \begin{cases} x_{ij}, & \text{if } l = i, \\ -x_{ji}, & \text{if } l = j, \\ 0, & \text{otherwise.} \end{cases}$$

The matrix A_T is called the *generic matrix* attached to the tree T.

Let T_1 and T_2 be the relation trees of A_1 and A_2 , respectively. Then the generic matrices corresponding to these trees are

$$B_1 = \begin{pmatrix} x_{12} & -x_{21} & 0 & 0 \\ x_{13} & 0 & -x_{31} & 0 \\ x_{14} & 0 & 0 & -x_{41} \end{pmatrix},$$

and

$$B_2 = \begin{pmatrix} x_{12} & -x_{21} & 0 & 0 \\ x_{13} & 0 & -x_{31} & 0 \\ 0 & x_{24} & 0 & -x_{42} \end{pmatrix}.$$

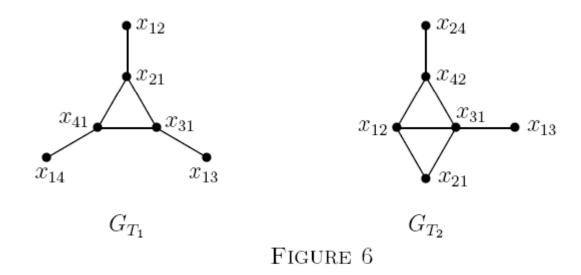
In order to describe the vertices and edges of G_T , let i and j be any two vertices of the tree T. There exists a unique path $P: i = i_0, i_1, \ldots, i_r = j$ from i to j. We set $b(i,j) = i_1$ and call b(i,j) the begin of P, and set $e(i,j) = i_{r-1}$ and call e(i,j) the end of P.

Thus the vertex set of the graph G_T is given as

$$V(G_T) = \{(i, j), (j, i) : \{i, j\} \text{ is an edge of } T\}.$$

In particular, $\{(i, k), (j, l)\}$ is an edge of G_T if and only if there exists a path P from i to j such that k = b(i, j) and l = e(i, j).

The generic graphs corresponding to the trees \mathcal{T}_1 and \mathcal{T}_2 are displayed in Figure 6.



By using Hilbert-Burch theorem we have

PROPOSITION 4.3. For any tree T, the graph G_T is bi-CM.

5. Inseparable models of Bi-CM graphs

Our aim is to give a classification of all bi-CM graphs up to separation.

Recall the concept of inseparability introduced by Fløystad, Greve and Herzog.

Let $S = K[x_1, ..., x_n]$ be the polynomial ring over the field K and $I \subset S$ a squarefree monomial ideal minimally generated by the monomials $u_1, ..., u_m$. Let y be an indeterminate over S. A monomial ideal $J \subset S[y]$ is called a *separation* of I for the variable x_i if the following holds:

- (i) the ideal I is the image of J under the K-algebra homomorphism $S[y] \to S$ with $y \mapsto x_i$ and $x_j \mapsto x_j$ for all j;
- (ii) x_i as well as y divide some minimal generator of J;
- (iii) $y x_i$ is a non-zero divisor of S[y]/J.

We now apply these concepts to edge ideals. A separation of the graph G with respect to the vertex i is a graph G' whose vertex set is $[n] \cup \{i'\}$ having the property that G is obtained from G' by identifying i with i' and such that $x_i - x_{i'}$ is a non-zerodivisor modulo $I_{G'}$. Algebraically, this identification amounts to say that $S/I_G \cong (S'/I_{G'})/(x_{i'}-x_i)(S'/I_{G'})$, where $S'=S[x_{i'}]$ and $x_{i'}-x_i$ is a non-zerodivisor of $S'/I_{G'}$. The algebraic condition on separation makes sure that the essential algebraic and homological invariants of I_G and $I_{G'}$ are the same. In particular, G is bi-CM if and only if G' is bi-CM. A graph which does not allow any separation is called inseparable, and a inseparable graph which is obtained by a finite number of separation steps from G is called a separable model of G.

EXAMPLE 5.1.

Let G be the triangle and G' be the line graph displayed in Figure 7.

FIGURE 7. A triangle and its inseparable model

Then $I_{G'} = (x_1x_2, x_1x_3, x_2x_4)$. Since $\operatorname{Ass}(I_{G'}) = \{(x_1, x_2), (x_1, x_4), (x_2, x_3)\}$, it follows that $x_3 - x_4$ is a non-zero divisor on $S'/I_{G'}$ where $S' = K[x_1, x_2, x_3, x_4]$. Moreover, $(S'/I_{G'})/(x_3 - x_4)(S'/I_{G'}) \cong S/I_G$. Therefore, the triangle in Figure 7 is obtained as a specialization from the line graph in Figure 7 by identifying the vertices x_3 and x_4 .

We denote by $G^{(i)}$ the complementary graph of the restriction $G_{N(i)}$ of G to N(i) where $N(i) = \{j : \{j,i\} \in E(G)\}$ is the neighborhood of i. In other words, $V(G^{(i)}) = N(i)$ and $E(G^{(i)}) = \{\{j,k\}: j,k \in N(i) \text{ and } \{j,k\} \not\in E(G)\}$. Note that $G^{(i)}$ is disconnected if and only if $N(i) = A \cup B$, where $A, B \neq \emptyset$, $A \cap B = \emptyset$ and all vertices of A are adjacent to those of B.

Here we will need the following result of Altmann, Bigdeli, Herzog and Lu.

THEOREM 5.2 The following conditions are equivalent:

- (a) The graph G is inseparable;
- (b) $G^{(i)}$ is connected for all i.

Our main result is the following. In fact, we establish a bijection between the set of all trees and the set of inseparable bi-Cohen-Macaulay graphs.

THEOREM 5.3

- (a) Let T be a tree. Then G_T is an inseparable bi-CM graph.
- (b) For any inseparable bi-CM graph G, there exists a unique tree T such that $G \cong G_T$.
- (c) Let G be any bi-CM graph. Then there exists a tree T such that G_T is an inseparable model of G.

REFERENCES

- K. Altmann, M. Bigdeli, J. Herzog, D. Lu, Algebraically rigid simplicial complexes and graphs, arXiv: 1503.08080[math.AC].
- [2] W. Bruns and J. Herzog, "Cohen-Macaulay rings" (Revised edition), Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, 1998.
- [3] W. Bruns and J. Herzog, On multigraded resolutions, Math. Proc. Camb. Phil. Soc. 118 (1995), 245–257.
- [4] W. Bruns and U. Vetter, Determinantal rings, Springer Verlag, Graduate texts in Mathematics 150 (1995).
- [5] J. A. Eagon, V. Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), 265-275.
- [6] D. Eisenbud, Commutative Algebra with a view to Algebraic geometry, Springer Verlag, 1995.
- [7] G. Fløystad, B. M. Greve, J. Herzog, Letterplace and co-letterplace ideals of posets, arXiv:1501.04523[math.AC].
- [8] G. Fløystad, J. E. Vatne, (Bi-)Cohen-Macaulay simplicial complexes and their associated coherent sheaves, Comm. Algebra 33 (2005), 3121–3136.
- J. Herzog and T. Hibi, Monomial Ideals. GTM 260. Springer 2010.
- [10] J. Herzog and T. Hibi, Distributive lattices, Bipartite graphs and Alexander duality, J. Algebraic Combin., 22(2005), 289–302.
- [11] J. Herzog and T. Hibi, X. Zheng, Cohen-Macaulay chordal graphs, J. Combin. Theory Ser. A, 113(2006), 911–916.
- [12] H. Lohne, The many polarizations of powers of maximal ideals, arXiv:1303.5780 (2013).

- [13] M. Naeem, Cohen-Macaulay monomial ideals of codimension 2, Manuscripta math, 127(2008), 533-545.
- [14] R. H. Villarreal, Monomial Algebras, Second Edition, Monographs and Research Notes in Mathematics, CRC Press, 2015.