Depth and regularity of powers of sum of ideals

Ngo Viet Trung¹

Institute of Mathematics Vietnamese Academy of Science and Technology

Tehran, November 2015

¹ Joint work with H.T. Ha (New Orleans) and T.N. $\exists rung(Hanoi) \leftarrow \exists rung(Ha$

Depth and regularity

Let R be a polynomial ring over a field k. Let M be a f.g. graded R-module.

Let
$$0 o F_s o \cdots F_0 o M$$
 be a graded minimal free resolution. depth $M = \dim R - s$,
$$\operatorname{reg} M = \max \{ d(F_i) - i | i = 0, ..., s \},$$

where $d(F_i) := \text{maximum degree}$ of the generators of F_i .

Depth and regularity

Let R be a polynomial ring over a field k. Let M be a f.g. graded R-module.

Let
$$0 \to F_s \to \cdots F_0 \to M$$
 be a graded minimal free resolution. depth $M = \dim R - s$,
$$\operatorname{reg} M = \max\{d(F_i) - i | i = 0, ..., s\},$$

where $d(F_i) := maximum$ degree of the generators of F_i .

In general, depth M and reg M can be defined in terms of the local cohomology modules of M.

Powers of ideals

Let Q be a homogeneous ideal in a polynomial ring R.

Powers of ideals

Let Q be a homogeneous ideal in a polynomial ring R.

Problem: to study the functions depth R/Q^n and reg R/Q^n .

Brodmann: depth $R/Q^n = \text{const for } n \gg 0$.

Cutkosky-Herzog-T, Kodiyalam: reg $R/Q^n = dn + e$ for $n \gg 0$.

Powers of ideals

Let Q be a homogeneous ideal in a polynomial ring R.

Problem: to study the functions depth R/Q^n and reg R/Q^n .

Brodmann: depth $R/Q^n = \text{const for } n \gg 0$.

Cutkosky-Herzog-T, Kodiyalam: $\operatorname{reg} R/Q^n = dn + e$ for $n \gg 0$.

In general, it is a hard problem. There are partial results, e.g. by Herzog-Hibi, Herzog-Vladiou: depth for monomial ideals,

Eisenbud-Harris, Eisenbud-Ulrich: regularity for zero-dimensional ideas.

Let $A=k[x_1,\ldots,x_r]$ and $B=k[y_1,\ldots,y_s]$. Let $I\subset A$ and $J\subset B$ be nonzero proper ideals. Let $R=k[x_1,\ldots,x_r,y_1,\ldots,y_s]$. We also use I,J for the ideals generated by I,J in R.

Let $A=k[x_1,\ldots,x_r]$ and $B=k[y_1,\ldots,y_s]$. Let $I\subset A$ and $J\subset B$ be nonzero proper ideals. Let $R=k[x_1,\ldots,x_r,y_1,\ldots,y_s]$. We also use I,J for the ideals generated by I,J in R.

Problem: To estimate depth $R/(I+J)^n$ and reg $R/(I+J)^n$ in terms of I and J.

Let $A = k[x_1, ..., x_r]$ and $B = k[y_1, ..., y_s]$.

Let $I \subset A$ and $J \subset B$ be nonzero proper ideals.

Let $R = k[x_1, ..., x_r, y_1, ..., y_s].$

We also use I, J for the ideals generated by I, J in R.

Problem: To estimate depth $R/(I+J)^n$ and reg $R/(I+J)^n$ in terms of I and J.

The simplest case: $J = (y) \subset B = k[y]$?

Let $A=k[x_1,\ldots,x_r]$ and $B=k[y_1,\ldots,y_s]$. Let $I\subset A$ and $J\subset B$ be nonzero proper ideals. Let $R=k[x_1,\ldots,x_r,y_1,\ldots,y_s]$. We also use I,J for the ideals generated by I,J in R.

Problem: To estimate depth $R/(I+J)^n$ and reg $R/(I+J)^n$ in terms of I and J.

The simplest case: $J = (y) \subset B = k[y]$?

Proposition:

$$\begin{split} \operatorname{depth} A[x]/(I,x)^n &= \min_{i \leq n} \operatorname{depth} A/I^i, \\ \operatorname{reg} A[x]/(I,x)^n &= \max_{i \leq n} \{\operatorname{reg} A/I^i - i\} + n. \end{split}$$

Motivation

Geometry: Fiber product of two varieties $X \times_k Y$

$$R/I + J = (A/I) \otimes_k (B/J)$$

Motivation

Geometry: Fiber product of two varieties $X \times_k Y$

$$R/I + J = (A/I) \otimes_k (B/J)$$

Combinatoric: Edge ideal of a graph (or hypergraph)

$$I(G) := (x_i x_j | \{i, j\} \in G).$$

If
$$G = G_1 \sqcup G_2$$
, then $I(G) = I(G_1) + I(G_2)$

Set
$$Q_i:=I^n+I^{n-1}J+\cdots+I^{n-i}J^i,\ i=0,\ldots,n.$$
 Then
$$I^n=Q_0\subset Q_1\subset\cdots\subset Q_n=(I+J)^n,$$

Set
$$Q_i:=I^n+I^{n-1}J+\cdots+I^{n-i}J^i,\ i=0,\ldots,n.$$
 Then
$$I^n=Q_0\subset Q_1\subset\cdots\subset Q_n=(I+J)^n,$$

$$0\to Q_i/Q_{i-1}\to R/Q_{i-1}\to R/Q_i\to 0.$$

We can estimate depth and reg of $R/(I+J)^n$ in terms of Q_i/Q_{i-1}

Set
$$Q_i:=I^n+I^{n-1}J+\cdots+I^{n-i}J^i,\ i=0,\ldots,n.$$
 Then
$$I^n=Q_0\subset Q_1\subset\cdots\subset Q_n=(I+J)^n,$$

$$0\to Q_i/Q_{i-1}\to R/Q_{i-1}\to R/Q_i\to 0.$$

We can estimate depth and reg of $R/(I+J)^n$ in terms of Q_i/Q_{i-1}

Lemma: $Q_i/Q_{i-1} \cong I^{n-i}J^i/I^{n-i+1}J^i$.

Set
$$Q_i:=I^n+I^{n-1}J+\cdots+I^{n-i}J^i$$
, $i=0,\ldots,n$. Then $I^n=Q_0\subset Q_1\subset\cdots\subset Q_n=(I+J)^n$, $0\to Q_i/Q_{i-1}\to R/Q_{i-1}\to R/Q_i\to 0$.

We can estimate depth and reg of $R/(I+J)^n$ in terms of Q_i/Q_{i-1}

Lemma:
$$Q_i/Q_{i-1} \cong I^{n-i}J^i/I^{n-i+1}J^i$$
.

$$0 \to Q_i/Q_{i-1} \to R/I^{n-i+1}J^i \to R/I^{n-i}J^i \to 0.$$

Hoa-Tam:

$$\begin{aligned} \operatorname{depth} R/IJ &= \operatorname{depth} A/I + \operatorname{depth} B/J + 1, \\ \operatorname{reg} R/IJ &= \operatorname{reg} A/I + \operatorname{reg} B/J + 1. \end{aligned}$$

Theorem:

$$\begin{split} \operatorname{depth} R / (I+J)^n &\geq \\ \min_{i \in [1,n-1], \ j \in [1,n]} \{ \operatorname{depth} A / I^{n-i} + \operatorname{depth} B / J^i + 1, \\ \operatorname{depth} A / I^{n-j+1} + \operatorname{depth} B / J^j \}, \end{split}$$

Theorem:

$$\begin{split} \operatorname{depth} R / (I+J)^n & \geq \\ \min_{i \in [1,n-1], \ j \in [1,n]} \{ \operatorname{depth} A / I^{n-i} + \operatorname{depth} B / J^i + 1, \\ \operatorname{depth} A / I^{n-j+1} + \operatorname{depth} B / J^j \}, \\ \operatorname{reg} R / (I+J)^n & \leq \\ \max_{i \in [1,n-1], \ j \in [1,n]} \{ \operatorname{reg} A / I^{n-i} + \operatorname{reg} B / J^i + 1, \operatorname{reg} A / I^{n-j+1} + \operatorname{reg} B / J^j \}. \end{split}$$

Theorem:

$$\begin{split} \operatorname{depth} R / (I+J)^n & \geq \\ \min_{i \in [1,n-1], \ j \in [1,n]} \{ \operatorname{depth} A / I^{n-i} + \operatorname{depth} B / J^i + 1, \\ \operatorname{depth} A / I^{n-j+1} + \operatorname{depth} B / J^j \}, \\ \operatorname{reg} R / (I+J)^n & \leq \\ \max_{i \in [1,n-1], \ j \in [1,n]} \{ \operatorname{reg} A / I^{n-i} + \operatorname{reg} B / J^i + 1, \operatorname{reg} A / I^{n-j+1} + \operatorname{reg} B / J^j \}. \end{split}$$

The inequality is 'almost' an equality.

Theorem:

$$\begin{split} \operatorname{depth} R / (I + J)^n & \geq \\ \min_{i \in [1, n - 1], \ j \in [1, n]} \{ \operatorname{depth} A / I^{n - i} + \operatorname{depth} B / J^i + 1, \\ \operatorname{depth} A / I^{n - j + 1} + \operatorname{depth} B / J^j \}, \\ \operatorname{reg} R / (I + J)^n & \leq \\ \max_{i \in [1, n - 1], \ j \in [1, n]} \{ \operatorname{reg} A / I^{n - i} + \operatorname{reg} B / J^i + 1, \operatorname{reg} A / I^{n - j + 1} + \operatorname{reg} B / J^j \}. \end{split}$$

The inequality is 'almost' an equality.

The maximum of one of the two formulas on the right sides can be attained separately.

Theorem:

$$\begin{split} \operatorname{depth} R / (I + J)^n & \geq \\ \min_{i \in [1, n - 1], \ j \in [1, n]} \{ \operatorname{depth} A / I^{n - i} + \operatorname{depth} B / J^i + 1, \\ \operatorname{depth} A / I^{n - j + 1} + \operatorname{depth} B / J^j \}, \\ \operatorname{reg} R / (I + J)^n & \leq \\ \max_{i \in [1, n - 1], \ j \in [1, n]} \{ \operatorname{reg} A / I^{n - i} + \operatorname{reg} B / J^i + 1, \operatorname{reg} A / I^{n - j + 1} + \operatorname{reg} B / J^j \}. \end{split}$$

The inequality is 'almost' an equality.

The maximum of one of the two formulas on the right sides can be attained separately.

No hope for exact formulas.

Estimation by decomposition

One can find exact formulas for depth and regularity of $(I+J)^n/(I+J)^{n+1}$.

Estimation by decomposition

One can find exact formulas for depth and regularity of $(I+J)^n/(I+J)^{n+1}$.

Lemma:
$$(I + J)^n/(I + J)^{n+1} = \bigoplus_{i+j=n} (I^i/I^{i+1} \otimes_k J^j/J^{j+1}).$$

Estimation by decomposition

One can find exact formulas for depth and regularity of $(I+J)^n/(I+J)^{n+1}$.

Lemma:
$$(I + J)^n/(I + J)^{n+1} = \bigoplus_{i+j=n} (I^i/I^{i+1} \otimes_k J^j/J^{j+1}).$$

Goto-Watanabe: Formula for the local cohomology modules of $M \otimes_k N$, where M and N are f.g. graded R-modules.

From this it follows:

$$\operatorname{depth} M \otimes_k N = \operatorname{depth} M + \operatorname{depth} N,$$

 $\operatorname{reg} M \otimes_k N = \operatorname{reg} M + \operatorname{reg} N.$

Theorem:

$$\begin{split} \operatorname{depth}(I+J)^n/(I+J)^{n+1} &= \min_{i+j=n} \{\operatorname{depth} I^i/I^{i+1} + \operatorname{depth} J^j/J^{j+1}\}, \\ \operatorname{reg}(I+J)^n/(I+J)^{n+1} &= \max_{i+j=n} \{\operatorname{reg} I^i/I^{i+1} + \operatorname{reg} J^j/J^{j+1}\}. \end{split}$$

Theorem:

$$\begin{split} \operatorname{depth}(I+J)^n/(I+J)^{n+1} &= \min_{i+j=n} \{\operatorname{depth} I^i/I^{i+1} + \operatorname{depth} J^j/J^{j+1}\}, \\ \operatorname{reg}(I+J)^n/(I+J)^{n+1} &= \max_{i+j=n} \{\operatorname{reg} I^i/I^{i+1} + \operatorname{reg} J^j/J^{j+1}\}. \end{split}$$

In general, one can not compute the invariants of $R/(I+J)^n$ from the invariants of $(I+J)^i/(I+J)^{i+1}$ for $i \leq n$.

Theorem:

$$\begin{split} \operatorname{depth}(I+J)^n/(I+J)^{n+1} &= \min_{i+j=n} \{\operatorname{depth} I^i/I^{i+1} + \operatorname{depth} J^j/J^{j+1}\}, \\ \operatorname{reg}(I+J)^n/(I+J)^{n+1} &= \max_{i+j=n} \{\operatorname{reg} I^i/I^{i+1} + \operatorname{reg} J^j/J^{j+1}\}. \end{split}$$

In general, one can not compute the invariants of $R/(I+J)^n$ from the invariants of $(I+J)^i/(I+J)^{i+1}$ for $i \leq n$.

Corollary:

$$\begin{split} \operatorname{depth} R/(I+J)^n &\geq \min_{i+j \leq n-1} \{\operatorname{depth} I^i/I^{i+1} + \operatorname{depth} J^j/J^{j+1}\}, \\ \operatorname{reg} R/(I+J)^n &\leq \max_{i+j \leq n-1} \{\operatorname{reg} I^i/I^{i+1} + \operatorname{reg} J^j/J^{j+1}\}. \end{split}$$

Theorem:

$$\begin{split} \operatorname{depth}(I+J)^n/(I+J)^{n+1} &= \min_{i+j=n} \{\operatorname{depth} I^i/I^{i+1} + \operatorname{depth} J^j/J^{j+1}\}, \\ \operatorname{reg}(I+J)^n/(I+J)^{n+1} &= \max_{i+j=n} \{\operatorname{reg} I^i/I^{i+1} + \operatorname{reg} J^j/J^{j+1}\}. \end{split}$$

In general, one can not compute the invariants of $R/(I+J)^n$ from the invariants of $(I+J)^i/(I+J)^{i+1}$ for $i \leq n$.

Corollary:

$$\begin{split} \operatorname{depth} R/(I+J)^n &\geq \min_{i+j \leq n-1} \{\operatorname{depth} I^i/I^{i+1} + \operatorname{depth} J^j/J^{j+1}\}, \\ \operatorname{reg} R/(I+J)^n &\leq \max_{i+j \leq n-1} \{\operatorname{reg} I^i/I^{i+1} + \operatorname{reg} J^j/J^{j+1}\}. \end{split}$$

These bounds are not related to the first given bounds.

Asymptotic depth

The asymptotic values of depth $R/(I+J)^n$ can be computed from that of depth $(I+J)^n/(I+J)^{n+1}$ and hence from those of depth A/I^n and depth B/J^n .

Asymptotic depth

The asymptotic values of depth $R/(I+J)^n$ can be computed from that of depth $(I+J)^n/(I+J)^{n+1}$ and hence from those of depth A/I^n and depth B/J^n .

Herzog and Hibi:

depth
$$Q^{n-1}/Q^n=$$
 const for $n\gg 0$, $\lim_{i\to\infty} \operatorname{depth} R/Q^n=\lim_{n\to\infty} \operatorname{depth} Q^{n-1}/Q^n$.

Asymptotic depth

The asymptotic values of depth $R/(I+J)^n$ can be computed from that of depth $(I+J)^n/(I+J)^{n+1}$ and hence from those of depth A/I^n and depth B/J^n .

Herzog and Hibi:

depth
$$Q^{n-1}/Q^n=$$
 const for $n\gg 0$, $\lim_{i\to\infty} \operatorname{depth} R/Q^n=\lim_{n\to\infty} \operatorname{depth} Q^{n-1}/Q^n$.

Theorem:

$$\begin{split} \lim_{n \to \infty} \operatorname{depth} R/(I+J)^n &= \\ & \min \big\{ \lim_{i \to \infty} \operatorname{depth} A/I^i + \min_{j \ge 1} \operatorname{depth} B/J^j, \\ & \min_{i > 1} \operatorname{depth} A/I^i + \lim_{i \to \infty} \operatorname{depth} B/J^n \big\}. \end{split}$$

Asymptotic regularity

Lemma: Let s(Q) denote the least integer m such that reg $Q^n = dn + e$ for $n \ge m$. Then $\operatorname{reg} R/Q^n = \operatorname{reg} Q^{n-1}/Q^n$ for $n \ge s(Q) + 1$.

Asymptotic regularity

Lemma: Let s(Q) denote the least integer m such that reg $Q^n = dn + e$ for $n \ge m$. Then $\operatorname{reg} R/Q^n = \operatorname{reg} Q^{n-1}/Q^n$ for $n \ge s(Q) + 1$.

Theorem:

Assume that
$$\operatorname{reg} I^n = dn + e$$
 and $\operatorname{reg} J^n = cn + f$ for $n \gg 0$. Set $e^* := \max_{i \leq s(I)} \{\operatorname{reg} I^i - ci\},$ $f^* := \max_{j \leq s(J)} \{\operatorname{reg} J^j - dj\}.$

For $n \gg 0$, we have

$$reg(I+J)^n = \begin{cases} c(n+1) + f + e^* - 1 & \text{if } c > d, \\ d(n+1) + \max\{f + e^*, e + f^*\} - 1 & \text{if } c = d. \end{cases}$$

Asymptotic regularity

Lemma: Let s(Q) denote the least integer m such that reg $Q^n = dn + e$ for $n \ge m$. Then $\operatorname{reg} R/Q^n = \operatorname{reg} Q^{n-1}/Q^n$ for $n \ge s(Q) + 1$.

Theorem:

Assume that $\operatorname{reg} I^n = dn + e$ and $\operatorname{reg} J^n = cn + f$ for $n \gg 0$. Set $e^* := \max_{i \leq s(I)} \{\operatorname{reg} I^i - ci\},$ $f^* := \max_{j \leq s(J)} \{\operatorname{reg} J^j - dj\}.$

For $n \gg 0$, we have

$$reg(I+J)^n = \begin{cases} c(n+1) + f + e^* - 1 & \text{if } c > d, \\ d(n+1) + \max\{f + e^*, e + f^*\} - 1 & \text{if } c = d. \end{cases}$$

One can give upper bound for s(I + J) in terms of s(I) and s(J).

Cohen-Macaulayness of powers

Theorem: The following conditions are equivalent:

- (i) $R/(I+J)^t$ is Cohen-Macaulay for all $t \leq n$,
- (ii) $(I+J)^{n-1}/(I+J)^n$ is Cohen-Macaulay,
- (iii) A/I^t and B/J^t are Cohen-Macaulay for all $t \leq n$,
- (iv) I^t/I^{t+1} and $J^t/J^{t+1)}$ are Cohen-Macaulay for all $t \leq n-1$.

Cohen-Macaulayness of powers

Theorem: The following conditions are equivalent:

- (i) $R/(I+J)^t$ is Cohen-Macaulay for all $t \leq n$,
- (ii) $(I+J)^{n-1}/(I+J)^n$ is Cohen-Macaulay,
- (iii) A/I^t and B/J^t are Cohen-Macaulay for all $t \leq n$,
- (iv) I^t/I^{t+1} and J^t/J^{t+1} are Cohen-Macaulay for all $t \leq n-1$.

Strange phenomenon: the Cohen-Macaulayness of only $(I+J)^{n-1}/(I+J)^n$ implies that of $R/(I+J)^t$ for all $t\leq n-1$.

Cohen-Macaulayness of powers

Theorem: The following conditions are equivalent:

- (i) $R/(I+J)^t$ is Cohen-Macaulay for all $t \leq n$,
- (ii) $(I+J)^{n-1}/(I+J)^n$ is Cohen-Macaulay,
- (iii) A/I^t and B/J^t are Cohen-Macaulay for all $t \leq n$,
- (iv) I^t/I^{t+1} and $J^t/J^{t+1)}$ are Cohen-Macaulay for all $t \leq n-1$.

Strange phenomenon: the Cohen-Macaulayness of only $(I+J)^{n-1}/(I+J)^n$ implies that of $R/(I+J)^t$ for all $t \le n-1$.

This result does not hold for an arbitrary ideal Q in R.

Herzog-Takayama-Terai: depth $R/Q^n \le \operatorname{depth} R/Q$ if Q is a squarefee monomial ideal.

Herzog-Takayama-Terai: depth $R/Q^n \le \operatorname{depth} R/Q$ if Q is a squarefee monomial ideal.

Q is said to have a constant depth function if depth $R/Q^n=\operatorname{depth} R/Q$ for all n.

Herzog-Takayama-Terai: depth $R/Q^n \le \operatorname{depth} R/Q$ if Q is a squarefee monomial ideal.

Q is said to have a constant depth function if depth $R/Q^n = \operatorname{depth} R/Q$ for all n.

Herzog and Vladiou: Let I, J be squarefree monomial ideals such that the Rees algebras of I and J are Cohen-Macaulay. Then I+J has a constant depth function if and only if so do I and J.

Herzog-Takayama-Terai: depth $R/Q^n \le \operatorname{depth} R/Q$ if Q is a squarefee monomial ideal.

Q is said to have a constant depth function if depth $R/Q^n = \operatorname{depth} R/Q$ for all n.

Herzog and Vladiou: Let I, J be squarefree monomial ideals such that the Rees algebras of I and J are Cohen-Macaulay. Then I+J has a constant depth function if and only if so do I and J.

Theorem: This result holds without the assumption on the Rees algebras.

Herzog-Takayama-Terai: depth $R/Q^n \le \operatorname{depth} R/Q$ if Q is a squarefee monomial ideal.

Q is said to have a constant depth function if depth $R/Q^n = \operatorname{depth} R/Q$ for all n.

Herzog and Vladiou: Let I, J be squarefree monomial ideals such that the Rees algebras of I and J are Cohen-Macaulay. Then I+J has a constant depth function if and only if so do I and J.

Theorem: This result holds without the assumption on the Rees algebras.

Not true if I, J are not squarefree monomial ideals

Herzog-Hibi: Given a convergent non-negative integer valued function f, does there exist a monomial ideal Q such that depth $R/Q^n = f(n)$ for all $n \ge 1$.

Herzog-Hibi: Given a convergent non-negative integer valued function f, does there exist a monomial ideal Q such that depth $R/Q^n = f(n)$ for all $n \ge 1$.

They showed that the answer is yes for all non-decreasing functions and special non-increasing functions.

Herzog-Hibi: Given a convergent non-negative integer valued function f, does there exist a monomial ideal Q such that depth $R/Q^n = f(n)$ for all $n \ge 1$.

They showed that the answer is yes for all non-decreasing functions and special non-increasing functions.

Theorem: Yes for all non-increasing functions.

Herzog-Hibi: Given a convergent non-negative integer valued function f, does there exist a monomial ideal Q such that depth $R/Q^n = f(n)$ for all $n \ge 1$.

They showed that the answer is yes for all non-decreasing functions and special non-increasing functions.

Theorem: Yes for all non-increasing functions.

Construct Q such that depth $Q^n/Q^{n+1}=f(n)$ by taking sums of ideals having depth functions of the form 1,...,1,0,0,...

References

- S. Goto and K Watanabe, On graded rings I, Math. Soc. Japan **30** (1978), 179–212.
- J. Herzog and T. Hibi, The depth of powers of an ideal, J. Algebra **291** (2005), 534–550.
- J. Herzog and M. Vladiou, Squarefree monomial ideals with constant depth function, J. Pure Appl. Algebra **217** (2013), 1764–1772.
- L. T. Hoa and N. D. Tam, On some invariants of a mixed product of ideals, Arch. Math. **94** (2010), 327–337.