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Let M be a f.g. graded R-module.

Let 0 > Fs — -+ Fp — M be a graded minimal free resolution.
depthM =dim R — s,
reg M = max{d(F;) —i| i =0,...,s},

where d(F;) :== maximum degree of the generators of F;.

In general, depth M and reg M can be defined in terms of the local
cohomology modules of M.
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Let Q be a homogeneous ideal in a polynomial ring R.

Problem: to study the functions depth R/Q" and reg R/ Q".

Brodmann: depth R/Q" = const for n > 0.
Cutkosky-Herzog-T, Kodiyalam: reg R/Q" = dn + e for n > 0.

In general, it is a hard problem. There are partial results, e.g. by
Herzog-Hibi, Herzog-Vladiou: depth for monomial ideals,

Eisenbud-Harris, Eisenbud-Ulrich: regularity for zero-dimensional
ideas.
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Sum of ideals

Let A= Kk[x1,...,x/] and B = k[y1,...,¥s].

Let /| C A and J C B be nonzero proper ideals.

Let R=K[x1,. .., Xrs Y15+ Vs

We also use I, J for the ideals generated by /,J in R.

Problem: To estimate depth R/(/ + J)" and reg R/(/ + J)" in
terms of / and J.

The simplest case: J = (y) C B=k[y] ?

Proposition:
depth A[x]/(/,x)" = min;<,depth A/,
reg A[x]/(I,x)" = max;<p{reg A/I' — i} + n.
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Motivation

Geometry: Fiber product of two varieties X x, Y
R/I+J=(A/l)®«(B/J)

Combinatoric: Edge ideal of a graph (or hypergraph)
I(G) = (x| {i.J} € G).

If G = Gy U Gy, then I(G) = I(G1) + I(Gy)
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Estimation by approximation

Set Q :=I"+I1"1J+ .4+ I"1J i=0,...,n Then
I"=QC@C---CQu=(+J),
0— Qi/Qi-1— R/Qi-1 — R/Qi — 0.

We can estimate depth and reg of R/(/ + J)" in terms of Q;/Qi—1

Lemma: Q;/Q;_1 = "1 Ji/In=+1 )i,

0= Qi/Qi_1 — R/I" L)  R/I"1J = 0.
Hoa-Tam:
depth R/IJ = depth A/l 4 depth B/J + 1,
regR/IJ=reg A/l +reg B/J + 1.
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First bounds

Theorem:
depth R/(l +J)" >
min {depth A/I"~" 4+ depth B/J" + 1,
i€[l,n—1], j€[1,n] . .
depth A/I1"J+1 4 depth B/ J/},
reg R/ +J)"

ma {regA/I” "fregB/J) +1,reg A/I" It freg B/ ).
i€[1,n—1], 16[1 n)

The inequality is ‘almost’ an equality.
The maximum of one of the two formulas on the right sides can be
attained separately.

No hope for exact formulas.
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Estimation by decomposition

One can find exact formulas for depth and regularity of
(I + D"/ + )Tt

Lemma: (/1 +J)"/(I+ )" = @ (I'/1IM @ /7).
i+j=n
Goto-Watanabe: Formula for the local cohomology modules of
M Ry N, where M and N are f.g. graded R-modules.
From this it follows:
depth M ®y N = depth M + depth N,
regM Q) N =reg M + reg N.
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Second bounds

Theorem:
depth(/ + J)" /(I + J)"T = min {depth I'J1™  depth #/ / F+1}
I+Jj=n
reg(/ +J)" /(1 + )" = max {reg /1Y + reg J ) HH1Y.
I+Jj=n

In general, one can not compute the invariants of R/(/ + J)" from
the invariants of (I + J)' /(I + J) for i < n.

Corollary:
depth R/(1+J)" = min_{depth /'/I" +depth #/ 41},
i+j<n—
regR/(1 + J)" < , max l{regl"/l’uf:l +reg J /1Y
i+j<n—

These bounds are not related to the first given bounds.
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Asymptotic depth

The asymptotic values of depth R/(/ + J)" can be computed from
that of depth(/ + J)"/(I + J)"*! and hence from those of
depth A/I" and depth B/J".

Herzog and Hibi:
depth Q"~1/Q" = const for n > 0,
lim depth R/Q" = lim depth @"~1/Q".
I—00 n—o00
Theorem:
. n
nIl_)n;Odepth R/(I+J)"=
min { lim depth A/I' + mindepth B/,
i—o0 >
mindepth A/I' + lim depth B/J"}.
i>1 j—oo
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Asymptotic regularity

Lemma: Let s(Q) denote the least integer m such that
reg Q" = dn+ e for n > m. Then

reg R/ Q" = reg Q”_I/Q" for n > s(Q) + 1.

Theorem:
Assume that reg /" = dn+ e and reg J” = cn+ f for n > 0. Set

e* == maxj<s({reg I' —ci},
f* := maxj<ss){reg J—dj}.
For n>> 0, we have
D+f+e—1 if c>d,
reg(/ + J)" = clnt)+Fte e

din+1)+max{f+e",e+f}—-1 ifc=d.

One can give upper bound for s(/ + J) in terms of s(/) and s(J).
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Cohen-Macaulayness of powers

Theorem: The following conditions are equivalent:

(i) R/(I + J)* is Cohen-Macaulay for all t < n,

(i) (1 + )™t /(I + J)" is Cohen-Macaulay,

(iii) A/I* and B/J* are Cohen-Macaulay for all ¢t < n,

(iv) 1t/1t+1 and Jt/JtY are Cohen-Macaulay for all t < n — 1.

Strange phenomenon: the Cohen-Macaulayness of only
(I + )" /(1 + J)" implies that of R/(/ 4+ J)* for all t < n— 1.

This result does not hold for an arbitrary ideal Q in R.
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Constant depth function
Herzog-Takayama-Terai: depth R/Q" < depthR/Q if Q is a
squarefee monomial ideal.

Q is said to have a constant depth function if
depth R/ Q" = depth R/Q for all n.

Herzog and Vladiou: Let I, J be squarefree monomial ideals such
that the Rees algebras of | and J are Cohen-Macaulay. Then [ + J
has a constant depth function if and only if so do / and J.

Theorem: This result holds without the assumption on the Rees
algebras.

Not true if /, J are not squarefree monomial ideals
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Non-increasing depth function

Herzog-Hibi: Given a convergent non-negative integer valued
function f, does there exist a monomial ideal @ such that
depth R/Q" = f(n) for all n > 1.

They showed that the answer is yes for all non-decreasing functions
and special non-increasing functions.

Theorem: Yes for all non-increasing functions.

Construct @ such that depth Q”/Q”+1 = f(n) by taking sums of
ideals having depth functions of the form 1,...,1,0,0,....
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