Suitable chains of semidualizing modules

Ensiyeh Amanzadeh

IPM

The 13th seminar on commutative algebra and related topics School of Mathemaics, IPM, 2016

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Semidualizing modules

Throughout (R, \mathfrak{m}, k) is a commutative Noetherian local ring.

Definition

An R-module C is called semidualizing, if

- *C* is finite (i.e. finitely generated)
- The natural homothety map $\chi^R_C: R \longrightarrow \operatorname{Hom}_R(C, C)$ is an isomorphism
- For all i > 0, $\operatorname{Ext}^{i}_{R}(C, C) = 0$

Example

Examples of semidualizing modules include

• R

• The dualizing module of R if it exists (dualizing module is a semidualizing module with finite injective dimension).

Semidualizing modules

Throughout C assumed to be a semidualizing R-module.

Basic properties

- $\operatorname{Ann}_R(C) = 0$ and $\operatorname{Supp}_R(C) = \operatorname{Spec}(R)$.
- $\dim_R(C) = \dim(R)$ and $\operatorname{Ass}_R(C) = \operatorname{Ass}_R(R)$.
- If R is local, then $\operatorname{depth}_R(C) = \operatorname{depth}(R)$.

If R is Gorenstein and local, then R is the only semidualizing R-module. Conversely, if the dualizing R-module is just the only semidualizing R-module, then R is Gorenstein.

Totally C-reflexive modules

Definition

A finite R-module M is totally C-reflexive when it satisfies the following conditions.

- The natural homomorphism $\delta_M^C : M \longrightarrow \operatorname{Hom}_R(\operatorname{Hom}_R(M, C), C)$ is an isomorphism.
- For all i > 0, $\operatorname{Ext}^{i}_{R}(M, C) = 0 = \operatorname{Ext}^{i}_{R}(\operatorname{Hom}_{R}(M, C), C)$.

• Every finite projective *R*-module is totally *C*-reflexive.

The set $\mathfrak{G}_0(R)$

The set of all isomorphism classes of semidualizing R-modules is denoted by $\mathfrak{G}_0(R)$, and the isomorphism class of a semidualizing R-module C is denoted [C].

- Write $[C] \trianglelefteq [B]$ when B is totally C-reflexive.
- Write $[C] \lhd [B]$ when $[C] \trianglelefteq [B]$ and $[C] \neq [B]$.
- If [*C*] ⊴ [*B*], then
 - (1) $\operatorname{Hom}_{R}(B, C)$ is a semidualizing, and
 - (2) $[C] \trianglelefteq [\operatorname{Hom}_R(B, C)].$

Chain in $\mathfrak{G}_0(R)$

A chain in $\mathfrak{G}_0(R)$ is a sequence $[C_n] \trianglelefteq \cdots \trianglelefteq [C_1] \trianglelefteq [C_0]$, and such a chain has length *n* if $[C_i] \neq [C_{i-1}]$ whenever $1 \le i \le n$.

Chain in $\mathfrak{G}_0(R)$

Assume that $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a chain in $\mathfrak{G}_0(R)$.

- For each $i \in [n] = \{1, \cdots, n\}$ set $B_i = \operatorname{Hom}_R(C_{i-1}, C_i)$.
- For each sequence of integers $\mathbf{i} = \{i_1, \cdots, i_j\}$ with $j \ge 1$ and $1 \le i_1 < \cdots < i_j \le n$, set $B_{\mathbf{i}} = B_{i_1} \otimes_R \cdots \otimes_R B_{i_j}$. ($B_{\{i_1\}} = B_{i_1}$ and set $B_{\emptyset} = C_0$.)

Chain in $\mathfrak{G}_0(R)$

For a semidualizing *R*-module *C*, set $(-)^{\dagger_C} = \operatorname{Hom}_R(-, C)$.

Definition

Let $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ be a chain in $\mathfrak{G}_0(R)$ of length n. For each sequence of integers $\mathbf{i} = \{i_1, \cdots, i_j\}$ such that $j \ge 0$ and $1 \le i_1 < \cdots < i_j \le n$, set $C_{\mathbf{i}} = C_0^{\dagger c_{i_1} \dagger c_{i_2} \cdots \dagger c_{i_j}}$. (When j = 0, set $C_{\mathbf{i}} = C_{\emptyset} = C_0$). We say that the above chain is *suitable* if $C_0 = R$ and $C_{\mathbf{i}}$ is totally C_t -reflexive, for all \mathbf{i} and t with $i_j \le t \le n$.

- If [C_n] ⊲ · · · ⊲ [C₁] ⊲ [R] is a suitable chain, then C_i is a semidualizing R-module for each i ⊆ [n].
- For each sequence of integers $\{x_1, \dots, x_m\}$ with $1 \leq x_1 < \dots < x_m \leq n$, the sequence $[C_{x_m}] \lhd \dots \lhd [C_{x_1}] \lhd [R]$ is a suitable chain in $\mathfrak{G}_0(R)$.

Chains in $\mathfrak{G}_0(R)$

Theorem (Gerko)

If $[C_n] \trianglelefteq \cdots \trianglelefteq [C_1] \trianglelefteq [C_0]$ is a chain in $\mathfrak{G}_0(R)$, then, for $i \in [n]$,

 $C_i \cong C_0 \otimes_R \operatorname{Hom}_R(C_0, C_1) \otimes_R \cdots \otimes_R \operatorname{Hom}_R(C_{i-1}, C_i).$

Proposition

Assume that $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a suitable chain in $\mathfrak{G}_0(R)$.

- (1) For each sequence $\mathbf{i} \subseteq [n]$, the *R*-module $B_{\mathbf{i}}$ is a semidualizing.
- (2) If $\mathbf{i}, \mathbf{s} \subseteq [n]$ are two sequences with $\mathbf{s} \subseteq \mathbf{i}$, then $[B_{\mathbf{i}}] \trianglelefteq [B_{\mathbf{s}}]$ and $\operatorname{Hom}_{R}(B_{\mathbf{s}}, B_{\mathbf{i}}) \cong B_{\mathbf{i} \setminus \mathbf{s}}$.
- (3) $|\mathfrak{G}_0(R)| \ge |\{[C_i] \mid i \subseteq [n]\}| = 2^n$.
- (4) $\{[B_{\mathbf{u}}] \mid \mathbf{u} \subseteq [n]\} = \{[C_{\mathbf{i}}] \mid \mathbf{i} \subseteq [n]\}.$

Suitable chains modulo regular sequences

Proposition

Assume that $\mathbf{x} = x_1, \cdots, x_d$ is an *R*-regular sequence in \mathfrak{m} and

 $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a suitable chain in $\mathfrak{G}_0(R)$ of length *n*.

Then $[\overline{C}_n] \lhd \cdots \lhd [\overline{C}_1] \lhd [\overline{C}_0]$ is also a suitable chain in $\mathfrak{G}_0(\overline{R})$ of length *n*, where $\overline{R} = R/\mathbf{x}R$ and $\overline{C}_i = \overline{R} \otimes_R C_i$ for $i = 0, 1, \cdots, n$.

Tor-independent modules

For the remaining part of this talk we assume that R is an Artinian local ring and that all modules are finite.

Definition (Gerko)

- The modules K_1, K_2, \dots, K_n are said to be weakly Tor-independent if $\operatorname{amp}(\otimes_{1 \leq i \leq n}^L K_i) = 0$.
- These modules are said to be strongly Tor-independent if for any subset Λ ⊆ [n] we have amp(⊗^L_{i∈Λ}K_i) = 0.

Theorem (Gerko)

If the modules K_1, K_2, \dots, K_n are non-free and strongly Tor-independent, then $\mathfrak{m}^n \neq 0$. If, under the same conditions, $\mathfrak{m}^{n+1} = 0$, then the Poincaré series of k has the form $1/\prod_{i=1}^n (1-d_it)$ for some positive integers d_i .

Tor-independent semidualizings

Conjecture (Gerko)

If $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a chain in $\mathfrak{G}_0(R)$ of length *n*, then $\mathfrak{m}^n \neq 0$. If, under the same conditions, $\mathfrak{m}^{n+1} = 0$, then the Poincaré series of *k* has the form $1/\prod_{i=1}^n (1-d_it)$ for some positive integers d_i .

Theorem

Let $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ be a suitable chain in $\mathfrak{G}_0(R)$ of length n, then $\mathfrak{m}^n \neq 0$. If, under the same conditions, $\mathfrak{m}^{n+1} = 0$, then the Poincaré series of k has the form $1/\prod_{i=1}^n (1-d_it)$ for some positive integers d_i .

Poincaré series of residue field

Remark

When (S, \mathfrak{n}) is a Cohen-Macaulay local ring with dimension d and $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a suitable chain in $\mathfrak{G}_0(S)$ of length n, then $[\overline{C}_n] \lhd \cdots \lhd [\overline{C}_1] \lhd [\overline{C}_0]$ is also a suitable chain in $\mathfrak{G}_0(\overline{S})$ of length n, where $\overline{S} = S/\mathbf{x}S$, $\overline{C}_i = \overline{S} \otimes_S C_i$ and $\mathbf{x} = x_1, \cdots, x_d$ is an S-regular sequence which is contained in \mathfrak{n} .

- If $\overline{\mathfrak{n}}^{n+1} = 0$, then the Poincaré series of $S/\mathfrak{n} \cong \overline{S}/\overline{\mathfrak{n}}$ has the form $1/\prod_{i=1}^{n}(1-d_it)$ for some positive integers d_i .
- The length of a suitable chain in $\mathfrak{G}_0(S)$ is less than the number $l = \min\{i > 0 \mid \overline{\mathfrak{n}}^i = 0\}.$

SD(n)-full rings

Definition (Gerko)

An Artinian ring R is called SD(n)-full if the following conditions are satisfied.

(i)
$$\mathfrak{m}^{n+1} = 0.$$

(*ii*) There are strongly Tor-independent non-free semidualizing modules K_1, K_2, \dots, K_n such that for any subset $\Lambda \subseteq [n]$ the module $\bigotimes_{i \in \Lambda} K_i$ is semidualizing.

Theorem

An Artinian ring R is SD(n)-full if and only if there is a suitable chain in $\mathfrak{G}_0(R)$ of length n and $\mathfrak{m}^{n+1} = 0$.

Example of suitable chains

Let *F* be a field. Set $S_i = F \ltimes F^{a_i}$ for all $1 \le i \le n$, where $a_i > 1$. Then S_i is an Artinian non-Gorenstein ring with dualizing module $D_i = \text{Hom}_F(S_i, F)$.

Set $S = \bigotimes_{F}^{1 \leq i \leq n} S_{i}$. Set $C_{0} = S$ and $C_{j} = (\bigotimes_{F}^{1 \leq i \leq j} D_{i}) \bigotimes_{F} (\bigotimes_{F}^{j < i \leq n} S_{i})$ for all $1 \leq j \leq n$. Then the sequence $[C_{n}] \lhd \cdots \lhd [C_{1}] \lhd [C_{0}]$ is a suitable chain in $\mathfrak{G}_{0}(S)$.

Bass series of semidualizing modules

Lemma

Let *R* be an Artinian ring with $\mathfrak{m}^{n+1} = 0$. Assume that $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a suitable chain in $\mathfrak{G}_0(R)$ of length *n*. Then for each $i \in [n]$ the Poincaré series of B_i is

$$P_{B_i}^R(t) = \frac{\beta_0^R(B_i) - t}{1 - \beta_0^R(B_i)t}$$

and the Bass series of $B_{[n]\setminus i}$ is

$$I_R^{B_{[n]\setminus i}}(t)=rac{\mu_R^0(B_{[n]\setminus i})-t}{1-\mu_R^0(B_{[n]\setminus i})t}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへ⊙

Bass series of semidualizing modules

Proposition

Let *R* be an Artinian ring with $\mathfrak{m}^{n+1} = 0$. Assume that $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a suitable chain in $\mathfrak{G}_0(R)$ of length *n*. Then for each $i \in [n]$ the Poincaré series of C_i is

$${\sf P}^{R}_{C_i}(t) = rac{\prod_{j=1}^{i}(eta_0^{R}(B_j)-t)}{\prod_{j=1}^{i}(1-eta_0^{R}(B_j)t)} \; ,$$

 $I_R^{C_n}(t) = 1$, and for $i \neq n$, the Bass series of C_i is

$$I_{R}^{C_{i}}(t) = \frac{\prod_{j=i+1}^{n} (\beta_{0}^{R}(B_{j}) - t)}{\prod_{j=i+1}^{n} (1 - \beta_{0}^{R}(B_{j})t)} = \frac{\prod_{j=i+1}^{n} (\mu_{R}^{0}(B_{[n]\setminus j}) - t)}{\prod_{j=i+1}^{n} (1 - \mu_{R}^{0}(B_{[n]\setminus j})t)}$$

Bass series of **F**

▶ The Bass series of *R* is

$$\begin{split} I_{R}(t) &= P_{C_{1}}^{R}(t) I_{R}^{C_{1}}(t) = I_{R}^{B_{[n]\setminus 1}}(t) I_{R}^{B_{[n]\setminus 2}}(t) \cdots I_{R}^{B_{[n]\setminus n}}(t) \\ &= \frac{\prod_{j=1}^{n} (\mu_{R}^{0}(B_{[n]\setminus j}) - t)}{\prod_{j=1}^{n} (1 - \mu_{R}^{0}(B_{[n]\setminus j}) t)} \end{split}$$

► For each
$$i \in [n]$$
,
 $I_R^{B_{[n]\setminus i}}(t) = \alpha_i + (\alpha_i^2 - 1)t + \alpha_i(\alpha_i^2 - 1)t^2 + \alpha_i^2(\alpha_i^2 - 1)t^3 + \cdots$,
where $\alpha_i = \mu_R^0(B_{[n]\setminus i})$. Thus $\{\mu_R^j(B_{[n]\setminus i})\}$ is strictly increasing.

 \therefore Therefore $\{\mu_R^j(R)\}$ is also strictly increasing whenever $n \ge 1$.

Let R be a Cohen-Macaulay local ring.

(1) If the sequence $\{\mu_R^i(R)\}$ is bounded above by a polynomial in *i*, must *R* be Gorenstein?

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

(2) If R is not Gorenstein, must the sequence $\{\mu_R^i(R)\}$ grow exponentially?

Bass series of a C-M ring

Assume that (S, \mathfrak{n}) is a Cohen-Macaulay local ring with dimension d and $\mathbf{x} = x_1, \dots, x_d$ is an S-regular sequence which is contained in \mathfrak{n} .

Set
$$\overline{S} = S/\mathbf{x}S$$
. We have $I_S(t) = t^d I_{\overline{S}}(t)$.

▶ If $[C_n] \lhd \cdots \lhd [C_1] \lhd [C_0]$ is a suitable chain in $\mathfrak{G}_0(S)$ of length n and $\overline{\mathfrak{n}}^{n+1} = 0$, then $I_S(t)$ has a very specific form and $\{\mu_S^i(S)\}$ is strictly increasing.

Thank You

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

References

• Amanzadeh and Dibaei, *Presentations of rings with a chain of semidualizing modules*, Math. Scand.(2016).

• Borna Lorestani, Sather-Wagstaff, and Yassemi, *Rings that are homologically of minimal multiplicity*, Comm. Algebra(2011).

- Christensen, Striuli, and Veliche, *Growth in the minimal injective resolution of a local ring*, J. London Math. Soc. (2010).
- Gerko, *On the structure of the set of semidualizing complexes*, Illinois J. Math. (2004).

• Jorgensen, Leuschke, and Sather-Wagstaff, *Presentations of Rings with Non-Trivial Semidualizing Modules*, Collect. Math. (2012).

• Sather-Wagstaff, *Bass numbers and semidualizing complexes*, Commutative Algebra and its Applications(2009).

• Sather-Wagstaff, Lower bounds for the number of semidualizing complexes over a local ring, Math. Scand.(2012).

Definition

► For an *R*-module *M*, the *i*th *Bass number* of *M* is the integer $\mu_R^i(M) = \operatorname{rank}_k(\operatorname{Ext}_R^i(k, M))$, and the *Bass series* of *M* is the formal Laurent series $I_R^M(t) = \sum_{i \in \mathbb{Z}} \mu_R^i(M) t^i$.

The *i*th *Betti number* of *M* is the integer $\beta_i^R(M) = \operatorname{rank}_k(\operatorname{Ext}_R^i(M, k)) = \operatorname{rank}_k(\operatorname{Tor}_i^R(k, M))$, and the *Poincaré series* of *M* is the formal Laurent series $P_M^R(t) = \sum_{i \in \mathbb{Z}} \beta_i^R(M) t^i$..

10