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Semidualizing modules

Throughout (R,m, k) is a commutative Noetherian local ring.

Definition

An R–module C is called semidualizing, if

• C is finite (i.e. finitely generated)

• The natural homothety map χR
C : R −→ HomR(C ,C ) is an

isomorphism

• For all i > 0, ExtiR(C ,C ) = 0

Example

Examples of semidualizing modules include
• R
• The dualizing module of R if it exists (dualizing module is a

semidualizing module with finite injective dimension).



Suitable chains of semidualizing modules

Semidualizing modules

Throughout C assumed to be a semidualizing R–module.

Basic properties

• AnnR(C ) = 0 and SuppR(C ) = Spec(R).

• dimR(C ) = dim(R) and AssR(C ) = AssR(R).

• If R is local, then depthR(C ) = depth(R).

If R is Gorenstein and local, then R is the only semidualizing
R–module. Conversely, if the dualizing R–module is just the only
semidualizing R–module, then R is Gorenstein.
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Totally C–reflexive modules

Definition

A finite R–module M is totally C –reflexive when it satisfies the
following conditions.

• The natural homomorphism
δCM : M −→ HomR(HomR(M,C ),C ) is an isomorphism.

• For all i > 0, ExtiR(M,C ) = 0 = ExtiR(HomR(M,C ),C ).

• Every finite projective R–module is totally C –reflexive.
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The set G0(R)

The set of all isomorphism classes of semidualizing R–modules is
denoted by G0(R), and the isomorphism class of a semidualizing
R–module C is denoted [C ].

• Write [C ] E [B] when B is totally C –reflexive.

• Write [C ] C [B] when [C ] E [B] and [C ] 6= [B].

• If [C ] E [B], then

(1) HomR(B,C ) is a semidualizing, and
(2) [C ] E [HomR(B,C )].

Chain in G0(R)

A chain in G0(R) is a sequence [Cn] E · · · E [C1] E [C0], and such
a chain has length n if [Ci ] 6= [Ci−1] whenever 1 6 i 6 n.
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Chain in G0(R)

Assume that [Cn] C · · · C [C1] C [C0] is a chain in G0(R).

• For each i ∈ [n] = {1, · · · , n} set Bi = HomR(Ci−1,Ci ).

• For each sequence of integers i = {i1, · · · , ij} with j > 1 and
1 6 i1 < · · · < ij 6 n, set Bi = Bi1 ⊗R · · · ⊗R Bij .
( B{i1} = Bi1 and set B∅ = C0.)
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Chain in G0(R)

For a semidualizing R–module C , set (−)†C = HomR(−,C ).

Definition

Let [Cn] C · · · C [C1] C [C0] be a chain in G0(R) of length n. For
each sequence of integers i = {i1, · · · , ij} such that j > 0 and

1 6 i1 < · · · < ij 6 n, set Ci = C
†Ci1
†Ci2
···†Cij

0 .
(When j = 0, set Ci = C∅ = C0 ).
We say that the above chain is suitable if C0 = R and Ci is totally
Ct–reflexive, for all i and t with ij 6 t 6 n.

• If [Cn] C · · · C [C1] C [R] is a suitable chain, then Ci is a
semidualizing R–module for each i ⊆ [n].

• For each sequence of integers {x1, · · · , xm} with
1 6 x1 < · · · < xm 6 n, the sequence
[Cxm ] C · · · C [Cx1 ] C [R] is a suitable chain in G0(R).
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Chains in G0(R)

Theorem (Gerko)

If [Cn] E · · · E [C1] E [C0] is a chain in G0(R), then, for i ∈ [n],

Ci
∼= C0 ⊗R HomR(C0,C1)⊗R · · · ⊗R HomR(Ci−1,Ci ).

Proposition

Assume that [Cn] C · · · C [C1] C [C0] is a suitable chain in G0(R).

(1) For each sequence i ⊆ [n], the R–module Bi is a semidualizing.

(2) If i, s ⊆ [n] are two sequences with s ⊆ i, then [Bi] E [Bs] and
HomR(Bs,Bi) ∼= Bi\s.

(3) |G0(R)| > |
{

[Ci] | i ⊆ [n]
}
| = 2n.

(4)
{

[Bu] | u ⊆ [n]
}

=
{

[Ci] | i ⊆ [n]
}

.
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Suitable chains modulo regular sequences

Proposition

Assume that x = x1, · · · , xd is an R-regular sequence in m and

[Cn] C · · · C [C1] C [C0] is a suitable chain in G0(R) of length n.

Then [Cn] C · · · C [C 1] C [C 0] is also a suitable chain in G0(R) of

length n, where R = R/xR and C i = R ⊗R Ci for i = 0, 1, · · · , n.
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Tor-independent modules

For the remaining part of this talk we assume that R is an Artinian
local ring and that all modules are finite.

Definition (Gerko)

• The modules K1,K2, · · · ,Kn are said to be weakly
Tor-independent if amp(⊗L

16i6nKi ) = 0.

• These modules are said to be strongly Tor-independent if for
any subset Λ ⊆ [n] we have amp(⊗L

i∈ΛKi ) = 0.

Theorem (Gerko)

If the modules K1,K2, · · · ,Kn are non-free and strongly
Tor-independent, then mn 6= 0. If, under the same conditions,
mn+1 = 0, then the Poincaré series of k has the form
1/
∏n

i=1(1− di t) for some positive integers di .
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Tor-independent semidualizings

Conjecture (Gerko)

If [Cn] C · · · C [C1] C [C0] is a chain in G0(R) of length n, then
mn 6= 0. If, under the same conditions, mn+1 = 0, then the
Poincaré series of k has the form 1/

∏n
i=1(1− di t) for some

positive integers di .

Theorem

Let [Cn] C · · · C [C1] C [C0] be a suitable chain in G0(R) of length
n, then mn 6= 0. If, under the same conditions, mn+1 = 0, then the
Poincaré series of k has the form 1/

∏n
i=1(1− di t) for some

positive integers di .
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Poincaré series of residue field

Remark

When (S , n) is a Cohen-Macaulay local ring with dimension d and
[Cn] C · · · C [C1] C [C0] is a suitable chain in G0(S) of length n,
then [Cn] C · · · C [C 1] C [C 0] is also a suitable chain in G0(S) of
length n, where S = S/xS , C i = S ⊗S Ci and x = x1, · · · , xd is an
S-regular sequence which is contained in n.

• If nn+1 = 0, then the Poincaré series of S/n ∼= S/n has the form
1/
∏n

i=1(1− di t) for some positive integers di .

• The length of a suitable chain in G0(S) is less than the number
l = min { i > 0 | ni = 0 }.
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SD(n)-full rings

Definition (Gerko)

An Artinian ring R is called SD(n)-full if the following conditions
are satisfied.

(i) mn+1 = 0.

(ii) There are strongly Tor-independent non-free semidualizing
modules K1,K2, · · · ,Kn such that for any subset Λ ⊆ [n] the
module ⊗i∈ΛKi is semidualizing.

Theorem

An Artinian ring R is SD(n)-full if and only if there is a suitable
chain in G0(R) of length n and mn+1 = 0.
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Example of suitable chains

Let F be a field. Set Si = F n F ai for all 1 6 i 6 n, where ai > 1.
Then Si is an Artinian non-Gorenstein ring with dualizing module
Di = HomF (Si ,F ).

Set S = ⊗16i6n
F Si .

Set C0 = S and Cj = (⊗16i6j
F Di )⊗F (⊗j<i6n

F Si ) for all 1 6 j 6 n.

Then the sequence [Cn] C · · · C [C1] C [C0] is a suitable chain in
G0(S).
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Bass series of semidualizing modules

Lemma

Let R be an Artinian ring with mn+1 = 0. Assume that
[Cn] C · · · C [C1] C [C0] is a suitable chain in G0(R) of length n.
Then for each i ∈ [n] the Poincaré series of Bi is

PR
Bi

(t) =
βR0 (Bi )− t

1− βR0 (Bi )t

and the Bass series of B[n]\i is

I
B[n]\i
R (t) =

µ0
R(B[n]\i )− t

1− µ0
R(B[n]\i )t

.
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Bass series of semidualizing modules

Proposition

Let R be an Artinian ring with mn+1 = 0. Assume that
[Cn] C · · · C [C1] C [C0] is a suitable chain in G0(R) of length n.
Then for each i ∈ [n] the Poincaré series of Ci is

PR
Ci

(t) =

∏i
j=1(βR0 (Bj)− t)∏i
j=1(1− βR0 (Bj)t)

,

ICn
R (t) = 1, and for i 6= n, the Bass series of Ci is

ICi
R (t) =

∏n
j=i+1(βR0 (Bj)− t)∏n
j=i+1(1− βR0 (Bj)t)

=

∏n
j=i+1(µ0

R(B[n]\j)− t)∏n
j=i+1(1− µ0

R(B[n]\j)t)
.
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Bass series of R

I The Bass series of R is

IR(t) = PR
C1

(t)IC1
R (t) = I

B[n]\1

R (t)I
B[n]\2

R (t) · · · IB[n]\n
R (t)

=
∏n

j=1(µ0
R(B[n]\j )−t)∏n

j=1(1−µ0
R(B[n]\j )t)

I For each i ∈ [n],

I
B[n]\i
R (t) = αi + (α2

i − 1)t + αi (α
2
i − 1)t2 + α2

i (α2
i − 1)t3 + · · · ,

where αi = µ0
R(B[n]\i ). Thus {µjR(B[n]\i )} is strictly increasing.

∴ Therefore {µjR(R)} is also strictly increasing whenever n > 1.
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Questions of Huneke

Let R be a Cohen-Macaulay local ring.

(1) If the sequence {µiR(R)} is bounded above by a polynomial in
i , must R be Gorenstein?

(2) If R is not Gorenstein, must the sequence {µiR(R)} grow
exponentially?
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Bass series of a C-M ring

Assume that (S , n) is a Cohen-Macaulay local ring with dimension
d and x = x1, · · · , xd is an S-regular sequence which is contained
in n.

Set S = S/xS . We have IS(t) = td IS(t).

I If [Cn] C · · · C [C1] C [C0] is a suitable chain in G0(S) of length
n and nn+1 = 0, then IS(t) has a very specific form and {µiS(S)} is
strictly increasing.



Thank You



Suitable chains of semidualizing modules

References

• Amanzadeh and Dibaei, Presentations of rings with a chain of
semidualizing modules, Math. Scand.(2016).
• Borna Lorestani, Sather-Wagstaff, and Yassemi, Rings that are
homologically of minimal multiplicity, Comm. Algebra(2011).
• Christensen, Striuli, and Veliche, Growth in the minimal injective
resolution of a local ring, J. London Math. Soc. (2010).
• Gerko, On the structure of the set of semidualizing complexes,
Illinois J. Math. (2004).
• Jorgensen, Leuschke, and Sather-Wagstaff, Presentations of
Rings with Non-Trivial Semidualizing Modules, Collect. Math.
(2012).
• Sather-Wagstaff, Bass numbers and semidualizing complexes,
Commutative Algebra and its Applications(2009).
• Sather-Wagstaff, Lower bounds for the number of semidualizing
complexes over a local ring, Math. Scand.(2012).



Suitable chains of semidualizing modules

Definition

I For an R-module M, the ith Bass number of M is the integer
µiR(M) = rankk(ExtiR(k ,M)), and the Bass series of M is the
formal Laurent series IMR (t) = Σi∈Zµ

i
R(M)t i .

IThe ith Betti number of M is the integer
βRi (M) = rankk(ExtiR(M, k)) = rankk(TorRi (k ,M)), and the
Poincaré series of M is the formal Laurent series
PR
M(t) = Σi∈Zβ

R
i (M)t i ..
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