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ription

Let A be an additive category

C(21)= The category of complexes over 2.
K(2()=The classical homotopy category of 2

o Obj(K(2))= Obj(C(A))
o Homy gy (X*®,Y*) = Home g (X*,Y*)/ ~

o f,g: X®* — Y* are homotopic if there exists a s such that
f—g=dys+sdx.
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Let 2 be an additive category
D(A)=The derived category of A
o Obj(D(A))= Obj(C(A))
o Hompg)(X*,Y*) = The equivalence classes of diagrams

T

XLy &z

where s is a quasi-isomorphism.
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Quivers

A quiver Q is a quadruple Q = (V| E, s, 1)
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Quivers

A quiver Q is a quadruple Q = (V| E, s, 1)
o V: the set of vertices

e FE: the set of arrows

e s,t: E — V two maps such that VYa € E, s(a) is the source
of a and t(a) is the target of a
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Quivers

A quiver Q is a quadruple Q = (V| E, s, 1)

al
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o A quiver Q is said to be finite if V and E are finite sets.

@ A path p of a quiver Q is a sequence of arrows a,, - - - asay
with t(a;) = s(aj41).

o A path of length [ > 1 is called cycle whenever its source
and target coincide.

@ A quiver is called acyclic if it contains no cycles.
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Let G be a Grothendieck category and Q be a quiver.

Definition
A representation M of 9 is defined by the following data:
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Let G be a Grothendieck category and Q be a quiver.

A representation M of 9 is defined by the following data:

@ To each vertex
v h~—~—~—~~~> an object M, € G.



Let G be a Grothendieck category and Q be a quiver.

A representation M of 9 is defined by the following data:

@ To each vertex
v h~—~—~—~~~> an object M, € G.

e To each arrow
a:v —r W k~—~—~~~~> an morphism M, : M, — M.
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Let G be a Grothendieck category and Q be a quiver.

Definition

A representation M of Q is defined by the following data:

o To each vertex
v h~—~~—~~~> an object M, € G.

e To each arrow
a:v— w r—~———~—~—> an morphism M, : M, — M,,.

We denoted the category of all representations of Q in G by
Rep(Q, G).

In particular if R is an associative ring with identity we denoted
by Rep(Q, R)(resp. rep(Q, R)) the category of all
representations by (resp. finitely generated) R-modules
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1) Model structures and Hovey pair

Let € be a category.



and Hovey p
odel

1) Model structures and Hovey pair
Let € be a category.
A model structure on € is a triple (Cof, W, Fib) of classes of

morphisms, called cofibrations, weak equivalences and
fibrations, respectively, such that satisfying certain axioms.
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1) Model structures and Hovey pair
Let € be a category.

A model structure on € is a triple (Cof, W, Fib) of classes of
morphisms, called cofibrations, weak equivalences and
fibrations, respectively, such that satisfying certain axioms.

An object W € € is said to be a trivial object if ) — W is a
weak equivalence.

An object A € € is said to be a cofibrant if ) — A is a
cofibration

Dually B € € is fibrant if B — * is fibration .
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Let 2 be an abelian category



Model structures and Hovey pairs

Let 2 be an abelian category

Definition

A pair (F,C) of classes of object of 2 is said to be a cotorsion
pair if F+ = C and F = +C, where the left and right
orthogonals are defined as follows

LC:={AeA | Exty(A,Y)=0, forall Y € C}
and

FLt:={AcA|Exty(W,A) =0, for all W € F}.



and Hovey p
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Let 2 be an abelian category

A cotorsion pair (F,C) is called complete if for every A € 2
there exist exact sequences

0—-Y W -—-A4—-0 and 0 A=Y =W =0,

where W, W' e Fand Y,Y' € C.
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Model structures and Hovey pairs

Let 2 be an abelian category

A cotorsion pair (F,C) is called complete if for every A € 2
there exist exact sequences

0—-Y W -—-A4—-0 and 0 A=Y =W =0,

where W, W' e Fand Y,Y' € C.

Definition

A thick subcategory of an abelian category 2 is a class of
objects W which is closed under direct summands and such
that if two out of three of the terms in a short exact sequence
are in W, then so is the third.



Model structures and Hovey p

Abelian model struct

An abelian model category is an complete and cocomplete
abelian category 2 equipped with a model structure such that

(1) A map is a cofibration if and only if it is a monomorphism
with cofibrant cokernel.

(2) A map is a fibration if and only if it is an epimorphism
with fibrant kernel.
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Model structures and Hovey pairs

Theorem[Hov02, Theorem 2.2]:

Let 2 be an abelian category with an abelian model structure.
Let C be the class of cofibrant objects, F the class of fibrant
objects and W the class of trivial objects. Then W is a thick
subcategory of 2 and both (C,W N F) and (C N W, F) are
complete cotorsion pairs in 2.

Conversely, given a thick subcategory W and classes C and F
making (C, WN F) and (C N W, F) each complete cotorsion
pairs, then there is an abelian model structure on 2 where C is
the cofibrant objects, F is the fibrant objects and W is the
trivial objects.



Theorem[Hov02, Theorem 2.2]:

Let 2 be an abelian category with an abelian model structure.
Let C be the class of cofibrant objects, F the class of fibrant
objects and W the class of trivial objects. Then W is a thick
subcategory of 2 and both (C,WN F) and (C N W, F) are
complete cotorsion pairs in 2.

Conversely, given a thick subcategory W and classes C and F
making (C, WN F) and (C N W, F) each complete cotorsion
pairs, then there is an abelian model structure on 2l where C is
the cofibrant objects, F is the fibrant objects and W is the
trivial objects.

A pair of cotorsion pairs (C, WN F) and (CNW, F) as in above
theorem have been referred to as Hovey pair. We also call
(C,W, F) a Hovey triple.
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Suppose € is a category with subcategory of W.
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2) Homotopy category of model category

Suppose € is a category with subcategory of W.

The localized category that denoted by ¢[W~!] is defined in
classical algebra.



2) Homotopy category of model category

Suppose € is a category with subcategory of W.

The localized category that denoted by ¢[W~!] is defined in
classical algebra.

In case € is a model category with weak equivalence W, define
¢[W1 as the Homotopy category associated to ¢ and denote
by HoC.



Homotopy category of model category

2) Homotopy category of model category

Suppose € is a category with subcategory of W.

The localized category that denoted by ¢[W~!] is defined in
classical algebra.

In case € is a model category with weak equivalence W, define
¢[W1 as the Homotopy category associated to ¢ and denote
by HoC.

Lemma,[Gill1,Proposition 4.4]

Let 2 be an abelian model category and f,g: X — Y be two
morphisms. If X is cofibrant and Y is fibrant, then f and g are
homotopic (we denote by f ~ g) if and only if f — g factor

through a trivially fibrant and cofibrant object.
Model structures on the category of complexes of quix
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Fundamental theorem about model category:

Let € be a model category.

Definition:

The axioms of model structure on € implies that any object

X € € has a cofibrant resolution consisting of cofibrant object
QX € € equipped with a trivially fibration QX — X in €.
Dually, X has also a fibrant resolution consisting of a fibrant
object RX € € equipped with a trivially cofibration X — RX.
The object QX (resp. RX) is called cofibrant replacement
(resp. fibrant replacement) of X.
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Fundamental theorem about model category:

|

Theorem
Let v : € — Ho€ be the canonical localization functor, and
denote by €.; the full subcategory given by the objects which
are cofibrant and fibrant.

(1) The composition €.y — € — Ho€ induces a category
equivalence (€.r)/ ~— Ho€, where €.;/ ~ is defined by
(ch/ N)(X’Y) = Ccf(*XV?Y)/ e

(2) There are canonical isomorphism
C(QX,RY)/ ~ = HoC€(vX,~Y) for arbitrary X,Y € €,
whenever ()X is a cofibrant replacement of X and RY is a
fibrant replacement of Y.



3) Model structure on C(Rep(Q,G))

Let Q be a quiver and G be a Grothendieck category.

C(Rep(Q, G)) = The category of all complexes with entries in
Rep(Q.G).



3) Model structure on C(Rep(Q,G))

Let Q be a quiver and G be a Grothendieck category.

C(Rep(Q, G)) = The category of all complexes with entries in
Rep(Q,G).

Notation:
(a) Let F be a class of objects of G. By (Q, F) we mean the

class of all representations X € Rep(Q, G) such that &,
belongs to F for each vertex v € V.

(b) By C(Q,F) we mean the class of all complexes
X* € C(Rep(Q,G)) such that X% belongs to (Q, F) for each
1 € Z.



Hovey pairs in C(Rep(Q, G))

Proposition:

Let O be an acyclic finite quiver and G be a Grothendieck

category. Suppose that (A, B) and (F,C) is a Hovey pair in

C(G), then

(a) (C(Q,4),C(Q, A)L) and (C(Q, F),C(Q, F)L) is a Hovey
pair in C(Rep(Q, G)).

(b) (+C(Q,B),C(Q,B)) and (+C(Q,(C)),C(Q,C)) is a Hovey
pair in C(Rep(Q, G)).
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o Let G be a Grothendieck category
e (F,C): A complete cotorsion pair in G

e F contain the generator of G



Model structure on C(Rep(Q, G))

o Let G be a Grothendieck category
e (F,C): A complete cotorsion pair in G

e F contain the generator of G

C(F)={X*eC(9) | Xie F,Viecl}

ex(F) = C(F)NE.

F={X*c& | Zi(X") e FVicZ}

C={X*e& | Z(X*) eC,ViecZ)

dg-F = {X* € C(F) | Hom(X*,C®) is exact, VC* € C}
dg-C = {X* € C(C) | Hom(F*, X*) is exact, VF* € F}



tructure

categ

Hovey pairs in C(G) :

[Gillespie]

If F is closed under taking kernels of epimorphisms, then

(dg-F,C) and (F,dg-C)

are a Hovey pair.
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Model structure on C(Rep(Q, G))

Hovey pairs in C(G) :

[Gillespie]

If F is closed under taking kernels of epimorphisms, then

(dg-F,C) and (F,dg-C)
are a Hovey pair.

e By putting C = Inj-R we have injective model structure on
C(R) that is constructed by Joyal.

e By putting F = Prj-R we have projective model structure
on C(R) that is constructed by Hovey.

e By putting F = Flat-R we have flat model structure on
C(R) that is constructed by Gillespie.



tructure

categ

Hovey pairs in C(G) :

[Enoc al.]
The pairs

(C(F),C(F)1) and (ex(F),ex(F)T)

are a Hovey pair
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Model structure on C(Rep(Q, G))

Hovey pairs in C(G) :

[Enochs et al.]

The pairs
(C(F),C(F)*) and (ex(F),ex(F)*)
are a Hovey pair

[Enochs et al.]
The pairs

(+C(C),C(C)) and (tex(F),ex(F))

are a Hovey pair



Model structure on C(Rep(Q, G))

Corollary:

Let (F,C) be a complete cotorsion pair in Grothendieck
category G and such that the class F contains a generator of G
and F is closed under kernels of epimorphisms. Then there is a
model structure on C(Rep(Q, G)) which we call componentwise
F-model structure, where the weak equivalences are the
homology isomorphisms, the cofibrations (resp. trivial
cofibrations) are the monomorphisms with cokernels in

(Q,dg-F) (resp, (Q,F)), and the fibrations (resp. trivial

fibrations) are the epimorphisms whose kernels are in (Q, F)
~ L
(resp. (Q,dg-F) ).

4L
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4) Some descriptions of D(Q)

e @ : an acyclic finite quiver,
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4) Some descriptions of D(Q)

e @ : an acyclic finite quiver,

@ R : an associative ring with identity,
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4) Some descriptions of D(Q)

e @ : an acyclic finite quiver,
@ R : an associative ring with identity,

o We write D(Q) (resp. K(Q), C(Q)) instead of
D(Rep(Q, 1)) (resp. K(Rep(Q, R)), C(Rep(Q, R))).
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4) Some descriptions of D(Q)

e @ : an acyclic finite quiver,

(]

R : an associative ring with identity,

We write D(Q) (resp. K(Q), C(Q)) instead of
D(Rep(Q, 1)) (resp. K(Rep(Q, R)), C(Rep(Q, R))).
£ : the class of exact complexes of R-modules.

(]



4) Some descriptions of D(Q)

e @ : an acyclic finite quiver,

@ R : an associative ring with identity,

o We write D(Q) (resp. K(Q), C(Q)) instead of
D(Rep(Q, R)) (resp. K(Rep(Q, R)), C(Rep(Q, R))).

o & : the class of exact complexes of R-modules.

Definition:

A complex X* is DG-projective (resp. DG-injective) if each X™
is projective (resp. injective) and if Hom(X*®, E®) (resp.
Hom(E®, X*®)) is an exact complex for all E* € £. We denote
by DGPrj-R (resp. DGInj-R) the class of all DG-projective
(resp. DG-injective) complexes of R-modules.
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4) Some descriptions of D(Q)

e @ : an acyclic finite quiver,

(]

R : an associative ring with identity,

We write D(Q) (resp. K(Q), C(Q)) instead of
D(Rep(Q, 1)) (resp. K(Rep(Q, R)), C(Rep(Q, R))).
£ : the class of exact complexes of R-modules.

(]

©

Prj?P-Q = all representations X € Rep(Q, R) such that for
every vertex v, X, is a projective module and the map
Nxw : Xp = Bs(a)=vXi(a) 18 Split epimorphism.
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4) Some descriptions of D(Q)

(]

Q@ : an acyclic finite quiver,

(]

R : an associative ring with identity,
We write D(Q) (resp. K(Q), C(Q)) instead of
D(Rep(Q, R)) (resp. K(Rep(Q, R)), C(Rep(Q, R))).

o & : the class of exact complexes of R-modules.

©

©

Prj°P-Q = all representations X € Rep(Q, R) such that for
every vertex v, X, is a projective module and the map
Nxw : X = Bs(a)=vXi(a) 18 Split epimorphism.

DGPrj’?-Q = all representation X* € Rep(Q, C(R)) such
that for every vertex v, X is DG-projective complexes of
R-modules and the map 7y , is split epimorphism.



structures
categc

structure
Some de

T

forphism categories

References

Consider the complete cotorsion pair (F,C) = (Prj-R, Mod-R).
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Consider the complete cotorsion pair (F,C) = (Prj-R, Mod-R).
e (dg-F,C) is a complete cotorsion pair in C(R).
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T

Consider the complete cotorsion pair (F,C) = (Prj-R, Mod-R).
e (dg-F,C) is a complete cotorsion pair in C(R).

° dg—]? is exactly equal to the class of all DG-projective
complexes of R-modules.
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Consider the complete cotorsion pair (F,C) = (Prj-R, Mod-R).
e (dg-F,C) is a complete cotorsion pair in C(R).

° dg—]? is exactly equal to the class of all DG-projective
complexes of R-modules.

We have the componentwise projective model structure on
C(Q) such that

(<Q> DGPl"j—R), (Qz DGPI’J"R)L) ) (<Q> Prj—(C(R)), (Q7 Pl"j—(C(R))l)

is a Hovey pair.
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Consider the complete cotorsion pair (F,C) = (Prj-R, Mod-R).
e (dg-F,C) is a complete cotorsion pair in C(R).
° dg—]? is exactly equal to the class of all DG-projective
complexes of R-modules.
o C =(9,DGPrj-R)
o F=(Q,Prj-C(R))"
e W = &g = the class of all exact complexes in C(Q).



Some descriptions of D(Q)

Consider the complete cotorsion pair (F,C) = (Prj-R, Mod-R).
e (dg-F,C) is a complete cotorsion pair in C(R).
° dg—]? is exactly equal to the class of all DG-projective
complexes of R-modules.
o C =(9Q,DGPrj-R)
o F=(Q,Prj-C(R))"
e W = &g = the class of all exact complexes in C(Q).

Clearly the homotopy category of this model structure is equal

to D(Q)
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Homotopy relation:

Consider the componentwise projective model structure on

C(Q).



Homotopy relation:

Consider the componentwise projective model structure on

C(Q).

CNW N F is exactly equal to all objects X* € C(Q) such that
satisfy in the following conditions:

(1) Xy € Prj-C(R) for each vertex v € V
(%) (2) For each vertex v € Vinxe oy : Ay = @Dy(0)=y X3

is epimorphism.



Homotopy relation:

Consider the componentwise projective model structure on

C(Q).

CNW N F is exactly equal to all objects X* € C(Q) such that
satisfy in the following conditions:

(1) X3 € Prj-C(R) for each vertex v € V
(%) (2) For each vertex v € V,nye, : Xy — ®s(a):y Xt.(a)

is epimorphism.

Ifx*el, Ve Fand f,g: X* — Y* then we say that f and g
are homotopic, written f ~¢y g, if and only if f — g factor
through an object P* such that satisfying two conditions in ()
as above.



Some descriptions of D(Q)

Lemma:

Let Q be an acyclic finite quiver. Consider componentwise
projective model structure on C(Q). If f,g: X* — Y* are two
morphisms of fibrant and cofibrant objects, then f ~¢y ¢ if and
only if f ~ g.

Model structures on the category of complexes of quix




Some descriptions of D(Q)

Theorem:

Let O be an acyclic finite quiver. Then we have the following
equivalence

K(DGPrj-Q) = D(Q)
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Some descriptions of D(Q)

Theorem:

Let O be an acyclic finite quiver. Then we have the following
equivalence

K(DGP1j’-Q) = D(Q)

Remark:

Note that in theorem above we introduce a subcategory, differ
from subcategory of DG-projective complexes of K(Q) such that
equivalent to D(Q) under the canonical functor K(Q) — D(Q).
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e Rep(Q, R) is an abelian category with enough projective
objects
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e Rep(Q, R) is an abelian category with enough projective
objects

o D(Q) = K(Q)/Kac(Q)
° D(Q) = K(Prj-Q)/Kac(Prj'Q)



Some descriptions of D(Q)

e Rep(Q, R) is an abelian category with enough projective
objects

o D(Q) = K(Q)/Kac(Q)
o D(Q) = K(Prj-Q)/Kac(Prj-Q)

Theorem:

Let O be an acyclic finite quiver. Then we have the following
equivalence

D(Q) = K(Q, Prj-R) /Kac(Q, Prj-R)
where K(Q, Prj-R) (resp. Kac(Q, Prj-R)) is the homotopy

category of all (resp. acyclic) complexes X'* € C(Q, Prj-R).
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5) Morphism categories

Let R be an associative ring with identity.



5) Morphism categories

Let R be an associative ring with identity.
H(R) : The morphism category

e ob(H(R)) = All maps f in Mod-R

e Mor(H(R)) = Commutative diagram.
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5) Morphism categories

Let R be an associative ring with identity.
H(R) : The morphism category
e ob(H(R)) = All maps f in Mod-R
e Mor(H(R)) = Commutative diagram.
If f: A— B is an object of H(R) we will write either

A
ALB) o
B
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5) Morphism categories

Let R be an associative ring with identity.
H(R) : The morphism category

(]

ob(H(R)) = All maps f in Mod-R
Mor(H(R)) = Commutative diagram.

S(R) =the full subcategory of H(R) consisting of all
monomorphisms in Mod-R

F(R) =the full subcategory of H(R) consisting of all
epimorphisms in Mod-R



These three categories are related by the kernel and cokernel

functors:
Cok: H(R) —» F(R), (AL B)w (B Coker(f))
Ker : H(R) — S(R), (A% B) — (Ker(g) 2% A)



These three categories are related by the kernel and cokernel

functors:
Cok:H(R) - F(R), (AL B)w (B Coker(f))
Ker : H(R) — S(R), (A% B) — (Ker(g) 2% A)
The restrictions of the kernel and cokernel functors
Ker: F(R) — S(R), Cok : S(R) — F(R)

induce a pair of inverse equivalences.
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o Cok®: C(S(R)) — C(F(R))
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o Cok®: C(S(R)) — C(F(R))

o (Ker®, Cok®) is a pair of inverse equivalence



Model structures and Hove
category of model
Model structure on C(R

Some descripti
Morphism
I

e Cok®: C(S(R)) — C(F(R))
o (Ker®, Cok®) is a pair of inverse equivalence
e Cok®*: K(S(R)) — K(F(R))
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e Cok®: C(S(R)) — C(F(R))
o (Ker®, Cok®) is a pair of inverse equivalence
e Cok®*: K(S(R)) — K(F(R))

o Cok® is an equivalence of homotopy categories.

Model structures on the category of complexes of quix



e Cok®: C(S(R)) — C(F(R))

o (Ker®, Cok®) is a pair of inverse equivalence

o Cok®* : K(S(R)) — K(F(R))

e Cok® is an equivalence of homotopy categories.

X € H(R) can be considered as an object of Rep(Asg, R)
whenever A, is the quiver ¢ —— o
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e Cok®: C(S(R)) — C(F(R))

o (Ker®, Cok®) is a pair of inverse equivalence

o Cok®* : K(S(R)) — K(F(R))

e Cok® is an equivalence of homotopy categories.

X € H(R) can be considered as an object of Rep(Asg, R)
whenever A, is the quiver ¢ —— o

There is an equivalence

Cok® : K(DGPrj-Ay) —» K(DGPrj-Ay)



So we define an auto-equivalence ¢ : D(H(R)) — D(H(R)) as
composition of the following equivalence functors




Morphism categories

So we define an auto-equivalence ¢ : D(H(R)) — D(H(R)) as
composition of the following equivalence functors

By using this equivalence we can define an equivalence
Yo : H(R) — H(R)
such that it is an extension of equivalence between S(R) and

F(R).
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e H(R) the category of all maps f in mod-R

e S(R) (resp. F(R)) the full subcategory of H(R) consisting
of all monomorphism (resp. epimorphism) maps.

Model structures on the category of complexes of quix



Morphism categories

e H(R) the category of all maps f in mod-R
e S(R) (resp. F(R)) the full subcategory of H(R) consisting

of all monomorphism (resp. epimorphism) maps.

Lemma:

Let R be a noetherian ring. Then we have the following
equivalence

K" (prj°P-Az) = DP(rep(42, R)) = D°(H(R))

where K—P(prj°P-Ay) is the homotopy category of all bounded
above complexes with bounded homologies and all entries in
prj°P-As,.



e H(R) the category of all maps f in mod-R

e S(R) (resp. F(R)) the full subcategory of H(R) consisting
of all monomorphism (resp. epimorphism) maps.

DP(H(R)) ——D"(H(R))

ot

H(R) ——=H(R)

o

S(R) —* = F(R)
Ker
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