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Let A be an additive category

C(A)= The category of complexes over A.

K(A)=The classical homotopy category of A

Obj(K(A))= Obj(C(A))

HomK(A)(X
•, Y •) = HomC(A)(X

•, Y •)/ ∼

f, g : X• → Y • are homotopic if there exists a s such that
f − g = dY s+ sdX .
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Let A be an additive category

D(A)=The derived category of A

Obj(D(A))= Obj(C(A))

HomD(A)(X
•, Y •) = The equivalence classes of diagrams

X•
r−→ Y •

s←− Z•

where s is a quasi-isomorphism.
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Quivers

A quiver Q is a quadruple Q = (V,E, s, t)
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Quivers

A quiver Q is a quadruple Q = (V,E, s, t)

V : the set of vertices

E: the set of arrows

s, t : E → V two maps such that ∀a ∈ E, s(a) is the source
of a and t(a) is the target of a
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Quivers

A quiver Q is a quadruple Q = (V,E, s, t)

v1

a1

  
v2

a2

cc
a3

yy

.

.

>>

.

``

.

`` >>

P. Bahiraei Model structures on the category of complexes of quiver representations



Model structures and Hovey pairs
Homotopy category of model category

Model structure on C(Rep(Q,G))
Some descriptions of D(Q)

Morphism categories
References

A quiver Q is said to be finite if V and E are finite sets.

A path p of a quiver Q is a sequence of arrows an · · · a2a1
with t(ai) = s(ai+1).

A path of length l ≥ 1 is called cycle whenever its source
and target coincide.

A quiver is called acyclic if it contains no cycles.
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Let G be a Grothendieck category and Q be a quiver.

Definition

A representation M of Q is defined by the following data:

To each vertex
v � // an object Mv ∈ G.

To each arrow
a : v −→ w � // an morphism Ma :Mv −→Mw.
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Let G be a Grothendieck category and Q be a quiver.

Definition

A representation M of Q is defined by the following data:

To each vertex
v � // an object Mv ∈ G.

To each arrow
a : v −→ w � // an morphism Ma :Mv −→Mw.

We denoted the category of all representations of Q in G by
Rep(Q,G).
In particular if R is an associative ring with identity we denoted
by Rep(Q, R)(resp. rep(Q, R)) the category of all
representations by (resp. finitely generated) R-modules

It is known that Rep(Q, R) is a Grothendieck category with
enough projectives.
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1) Model structures and Hovey pair

Let C be a category.

A model structure on C is a triple (Cof,W,Fib) of classes of
morphisms, called cofibrations, weak equivalences and
fibrations, respectively, such that satisfying certain axioms.

An object W ∈ C is said to be a trivial object if ∅ →W is a
weak equivalence.

An object A ∈ C is said to be a cofibrant if ∅ → A is a
cofibration

Dually B ∈ C is fibrant if B → ∗ is fibration .
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Let A be an abelian category

Definition

A thick subcategory of an abelian category A is a class of
objects W which is closed under direct summands and such
that if two out of three of the terms in a short exact sequence
are in W, then so is the third.
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Let A be an abelian category

Definition

A pair (F , C) of classes of object of A is said to be a cotorsion
pair if F⊥ = C and F = ⊥C, where the left and right
orthogonals are defined as follows

⊥C := {A ∈ A | Ext1A(A, Y ) = 0, for all Y ∈ C}

and

F⊥ := {A ∈ A | Ext1A(W,A) = 0, for all W ∈ F}.

Definition

A thick subcategory of an abelian category A is a class of
objects W which is closed under direct summands and such
that if two out of three of the terms in a short exact sequence
are in W, then so is the third.
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Let A be an abelian category

A cotorsion pair (F , C) is called complete if for every A ∈ A
there exist exact sequences

0→ Y →W → A→ 0 and 0→ A→ Y ′ →W ′ → 0,

where W,W ′ ∈ F and Y, Y ′ ∈ C.

Definition

A thick subcategory of an abelian category A is a class of
objects W which is closed under direct summands and such
that if two out of three of the terms in a short exact sequence
are in W, then so is the third.
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Abelian model structure:

An abelian model category is an complete and cocomplete
abelian category A equipped with a model structure such that

(1) A map is a cofibration if and only if it is a monomorphism
with cofibrant cokernel.

(2) A map is a fibration if and only if it is an epimorphism
with fibrant kernel.

P. Bahiraei Model structures on the category of complexes of quiver representations



Model structures and Hovey pairs
Homotopy category of model category

Model structure on C(Rep(Q,G))
Some descriptions of D(Q)

Morphism categories
References

Theorem[Hov02, Theorem 2.2]:

Let A be an abelian category with an abelian model structure.
Let C be the class of cofibrant objects, F the class of fibrant
objects and W the class of trivial objects. Then W is a thick
subcategory of A and both (C,W ∩F) and (C ∩W,F) are
complete cotorsion pairs in A.
Conversely, given a thick subcategory W and classes C and F
making (C,W ∩F) and (C ∩W,F) each complete cotorsion
pairs, then there is an abelian model structure on A where C is
the cofibrant objects, F is the fibrant objects and W is the
trivial objects.
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Theorem[Hov02, Theorem 2.2]:

Let A be an abelian category with an abelian model structure.
Let C be the class of cofibrant objects, F the class of fibrant
objects and W the class of trivial objects. Then W is a thick
subcategory of A and both (C,W ∩F) and (C ∩W,F) are
complete cotorsion pairs in A.
Conversely, given a thick subcategory W and classes C and F
making (C,W ∩F) and (C ∩W,F) each complete cotorsion
pairs, then there is an abelian model structure on A where C is
the cofibrant objects, F is the fibrant objects and W is the
trivial objects.

A pair of cotorsion pairs (C,W ∩F) and (C ∩W,F) as in above
theorem have been referred to as Hovey pair. We also call
(C,W,F) a Hovey triple.
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2) Homotopy category of model category

Suppose C is a category with subcategory of W.
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2) Homotopy category of model category

Suppose C is a category with subcategory of W.

The localized category that denoted by C[W−1] is defined in
classical algebra.
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2) Homotopy category of model category

Suppose C is a category with subcategory of W.

The localized category that denoted by C[W−1] is defined in
classical algebra.

In case C is a model category with weak equivalence W, define
C[W−1] as the Homotopy category associated to C and denote
by HoC.
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2) Homotopy category of model category

Suppose C is a category with subcategory of W.

The localized category that denoted by C[W−1] is defined in
classical algebra.

In case C is a model category with weak equivalence W, define
C[W−1] as the Homotopy category associated to C and denote
by HoC.

Lemma,[Gil11,Proposition 4.4]

Let A be an abelian model category and f, g : X → Y be two
morphisms. If X is cofibrant and Y is fibrant, then f and g are
homotopic (we denote by f ∼ g) if and only if f − g factor
through a trivially fibrant and cofibrant object.
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Fundamental theorem about model category:

Let C be a model category.

Definition:

The axioms of model structure on C implies that any object
X ∈ C has a cofibrant resolution consisting of cofibrant object
QX ∈ C equipped with a trivially fibration QX −→ X in C.
Dually, X has also a fibrant resolution consisting of a fibrant
object RX ∈ C equipped with a trivially cofibration X −→ RX.
The object QX (resp. RX) is called cofibrant replacement
(resp. fibrant replacement) of X.
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Fundamental theorem about model category:

Theorem:

Let γ : C→ HoC be the canonical localization functor, and
denote by Ccf the full subcategory given by the objects which
are cofibrant and fibrant.

(1) The composition Ccf → C→ HoC induces a category
equivalence (Ccf )/ ∼→ HoC, where Ccf/ ∼ is defined by
(Ccf/ ∼)(X,Y ) = Ccf (X,Y )/ ∼.

(2) There are canonical isomorphism

C(QX,RY )/ ∼
∼= // HoC(γX, γY ) for arbitrary X,Y ∈ C,

whenever QX is a cofibrant replacement of X and RY is a
fibrant replacement of Y .
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3) Model structure on C(Rep(Q,G))

Let Q be a quiver and G be a Grothendieck category.

C(Rep(Q,G)) = The category of all complexes with entries in
Rep(Q,G).

Notation:

(a) Let F be a class of objects of G. By (Q,F) we mean the
class of all representations X ∈ Rep(Q,G) such that Xv
belongs to F for each vertex v ∈ V .

(b) By C(Q,F) we mean the class of all complexes
X • ∈ C(Rep(Q,G)) such that X i belongs to (Q,F) for each
i ∈ Z.
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Hovey pairs in C(Rep(Q,G))

Proposition:

Let Q be an acyclic finite quiver and G be a Grothendieck
category. Suppose that (A,B) and (F , C) is a Hovey pair in
C(G), then

(a) (C(Q,A),C(Q,A)⊥) and (C(Q,F),C(Q,F)⊥) is a Hovey
pair in C(Rep(Q,G)).

(b) (⊥C(Q,B),C(Q,B)) and (⊥C(Q, C)),C(Q, C)) is a Hovey
pair in C(Rep(Q,G)).
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Let G be a Grothendieck category

(F , C) : A complete cotorsion pair in G
F contain the generator of G
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Let G be a Grothendieck category

(F , C) : A complete cotorsion pair in G
F contain the generator of G

Consider the following subclasses of C(G) :

C(F) = {X• ∈ C(G) | Xi ∈ F ,∀i ∈ Z}
ex(F) = C(F) ∩ E .

F̃ = {X• ∈ E | Zi(X•) ∈ F , ∀i ∈ Z}
C̃ = {X• ∈ E | Zi(X•) ∈ C,∀i ∈ Z}
dg-F̃ = {X• ∈ C(F) | Hom(X•, C•) is exact, ∀C• ∈ C}
dg-C̃ = {X• ∈ C(C) | Hom(F •, X•) is exact, ∀F • ∈ F}
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Hovey pairs in C(G) :

[Gillespie]

If F is closed under taking kernels of epimorphisms, then

(dg-F̃ , C̃) and (F̃ , dg-C̃)

are a Hovey pair.
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Hovey pairs in C(G) :

[Gillespie]

If F is closed under taking kernels of epimorphisms, then

(dg-F̃ , C̃) and (F̃ , dg-C̃)

are a Hovey pair.

By putting C = Inj-R we have injective model structure on
C(R) that is constructed by Joyal.

By putting F = Prj-R we have projective model structure
on C(R) that is constructed by Hovey.

By putting F = Flat-R we have flat model structure on
C(R) that is constructed by Gillespie.
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Hovey pairs in C(G) :

[Enochs et al.]

The pairs

(C(F),C(F)⊥) and (ex(F), ex(F)⊥)

are a Hovey pair
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Hovey pairs in C(G) :

[Enochs et al.]

The pairs

(C(F),C(F)⊥) and (ex(F), ex(F)⊥)

are a Hovey pair

[Enochs et al.]

The pairs
(⊥C(C),C(C)) and (⊥ex(F), ex(F))

are a Hovey pair
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Corollary:

Let (F , C) be a complete cotorsion pair in Grothendieck
category G and such that the class F contains a generator of G
and F is closed under kernels of epimorphisms. Then there is a
model structure on C(Rep(Q,G)) which we call componentwise
F̃-model structure, where the weak equivalences are the
homology isomorphisms, the cofibrations (resp. trivial
cofibrations) are the monomorphisms with cokernels in
(Q,dg-F̃) (resp, (Q, F̃)), and the fibrations (resp. trivial

fibrations) are the epimorphisms whose kernels are in (Q, F̃)
⊥

(resp. (Q,dg-F̃)
⊥

).
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4) Some descriptions of D(Q)

Q : an acyclic finite quiver,

R : an associative ring with identity,

We write D(Q) (resp. K(Q), C(Q)) instead of
D(Rep(Q, R)) (resp. K(Rep(Q, R)), C(Rep(Q, R))).

E : the class of exact complexes of R-modules.
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4) Some descriptions of D(Q)

Q : an acyclic finite quiver,

R : an associative ring with identity,

We write D(Q) (resp. K(Q), C(Q)) instead of
D(Rep(Q, R)) (resp. K(Rep(Q, R)), C(Rep(Q, R))).

E : the class of exact complexes of R-modules.

Definition:

A complex X• is DG-projective (resp. DG-injective) if each Xn

is projective (resp. injective) and if Hom(X•, E•) (resp.
Hom(E•, X•)) is an exact complex for all E• ∈ E . We denote
by DGPrj-R (resp. DGInj-R) the class of all DG-projective
(resp. DG-injective) complexes of R-modules.
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4) Some descriptions of D(Q)

Q : an acyclic finite quiver,

R : an associative ring with identity,

We write D(Q) (resp. K(Q), C(Q)) instead of
D(Rep(Q, R)) (resp. K(Rep(Q, R)), C(Rep(Q, R))).

E : the class of exact complexes of R-modules.

Prjop-Q = all representations X ∈ Rep(Q, R) such that for
every vertex v, Xv is a projective module and the map
ηX ,v : Xv → ⊕s(a)=vXt(a) is split epimorphism.
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4) Some descriptions of D(Q)

Q : an acyclic finite quiver,

R : an associative ring with identity,

We write D(Q) (resp. K(Q), C(Q)) instead of
D(Rep(Q, R)) (resp. K(Rep(Q, R)), C(Rep(Q, R))).

E : the class of exact complexes of R-modules.

Prjop-Q = all representations X ∈ Rep(Q, R) such that for
every vertex v, Xv is a projective module and the map
ηX ,v : Xv → ⊕s(a)=vXt(a) is split epimorphism.

DGPrjop-Q = all representation X • ∈ Rep(Q,C(R)) such
that for every vertex v, X •v is DG-projective complexes of
R-modules and the map ηX •,v is split epimorphism.
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Consider the complete cotorsion pair (F , C) = (Prj-R,Mod-R).

(dg-F̃ , C̃) is a complete cotorsion pair in C(R).

dg-F̃ is exactly equal to the class of all DG-projective
complexes of R-modules.
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Consider the complete cotorsion pair (F , C) = (Prj-R,Mod-R).

(dg-F̃ , C̃) is a complete cotorsion pair in C(R).

dg-F̃ is exactly equal to the class of all DG-projective
complexes of R-modules.

We have the componentwise projective model structure on
C(Q) such that

((Q,DGPrj-R), (Q,DGPrj-R)⊥) , ((Q,Prj-C(R)), (Q,Prj-C(R))⊥)

is a Hovey pair.
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Consider the complete cotorsion pair (F , C) = (Prj-R,Mod-R).

(dg-F̃ , C̃) is a complete cotorsion pair in C(R).

dg-F̃ is exactly equal to the class of all DG-projective
complexes of R-modules.

C = (Q,DGPrj-R)

F = (Q,Prj-C(R))⊥

W = EQ = the class of all exact complexes in C(Q).
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Consider the complete cotorsion pair (F , C) = (Prj-R,Mod-R).

(dg-F̃ , C̃) is a complete cotorsion pair in C(R).

dg-F̃ is exactly equal to the class of all DG-projective
complexes of R-modules.

C = (Q,DGPrj-R)

F = (Q,Prj-C(R))⊥

W = EQ = the class of all exact complexes in C(Q).

Clearly the homotopy category of this model structure is equal
to D(Q)
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Homotopy relation:

Consider the componentwise projective model structure on
C(Q).
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Homotopy relation:

Consider the componentwise projective model structure on
C(Q).

C ∩W ∩ F is exactly equal to all objects X • ∈ C(Q) such that
satisfy in the following conditions:

(>)

(1) X •v ∈ Prj-C(R) for each vertex v ∈ V
(2) For each vertex v ∈ V, ηX •,v : X •v →

⊕
s(a)=v X •t(a)

is epimorphism.

.
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Homotopy relation:

Consider the componentwise projective model structure on
C(Q).

C ∩W ∩ F is exactly equal to all objects X • ∈ C(Q) such that
satisfy in the following conditions:

(>)

(1) X •v ∈ Prj-C(R) for each vertex v ∈ V
(2) For each vertex v ∈ V, ηX •,v : X •v →

⊕
s(a)=v X •t(a)

is epimorphism.

.

If X • ∈ C, Y• ∈ F and f, g : X • → Y• then we say that f and g
are homotopic, written f ∼cw g, if and only if f − g factor
through an object P• such that satisfying two conditions in (>)
as above.
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Lemma:

Let Q be an acyclic finite quiver. Consider componentwise
projective model structure on C(Q). If f, g : X • −→ Y• are two
morphisms of fibrant and cofibrant objects, then f ∼cw g if and
only if f ∼ g.
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Theorem:

Let Q be an acyclic finite quiver. Then we have the following
equivalence

K(DGPrjop-Q) ∼= D(Q)
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Theorem:

Let Q be an acyclic finite quiver. Then we have the following
equivalence

K(DGPrjop-Q) ∼= D(Q)

Remark:

Note that in theorem above we introduce a subcategory, differ
from subcategory of DG-projective complexes of K(Q) such that
equivalent to D(Q) under the canonical functor K(Q) −→ D(Q).
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Rep(Q, R) is an abelian category with enough projective
objects

D(Q) = K(Q)/Kac(Q)

D(Q) = K(Prj-Q)/Kac(Prj-Q)
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Rep(Q, R) is an abelian category with enough projective
objects

D(Q) = K(Q)/Kac(Q)

D(Q) = K(Prj-Q)/Kac(Prj-Q)

Theorem:

Let Q be an acyclic finite quiver. Then we have the following
equivalence

D(Q) ∼= K(Q,Prj-R)/Kac(Q,Prj-R)

where K(Q,Prj-R) (resp. Kac(Q,Prj-R)) is the homotopy
category of all (resp. acyclic) complexes X • ∈ C(Q,Prj-R).
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Rep(Q, R) is an abelian category with enough projective
objects

D(Q) = K(Q)/Kac(Q)

D(Q) = K(Prj-Q)/Kac(Prj-Q)

Theorem:

Let Q be an acyclic finite quiver. Then we have the following
equivalence

D(Q) ∼= K(Q,Prj-R)/Kac(Q,Prj-R)

where K(Q,Prj-R) (resp. Kac(Q,Prj-R)) is the homotopy
category of all (resp. acyclic) complexes X • ∈ C(Q,Prj-R).
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5) Morphism categories

Let R be an associative ring with identity.

H(R) : The morphism category

ob(H(R)) = All maps f in Mod-R

Mor(H(R)) = Commutative diagram.
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H(R) : The morphism category

ob(H(R)) = All maps f in Mod-R

Mor(H(R)) = Commutative diagram.
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5) Morphism categories

Let R be an associative ring with identity.
H(R) : The morphism category

ob(H(R)) = All maps f in Mod-R

Mor(H(R)) = Commutative diagram.

If f : A→ B is an object of H(R) we will write either

(A
f−→ B) or

A

↓f
B
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5) Morphism categories

Let R be an associative ring with identity.
H(R) : The morphism category

ob(H(R)) = All maps f in Mod-R

Mor(H(R)) = Commutative diagram.

S(R) =the full subcategory of H(R) consisting of all
monomorphisms in Mod-R

F(R) =the full subcategory of H(R) consisting of all
epimorphisms in Mod-R
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These three categories are related by the kernel and cokernel
functors:

Cok : H(R)→ F(R), (A
f−→ B) 7→ (B

can−−→ Coker(f))

Ker : H(R)→ S(R), (A
g−→ B) 7→ (Ker(g)

incl−−→ A)

The restrictions of the kernel and cokernel functors

Ker : F(R)→ S(R), Cok : S(R)→ F(R)

induce a pair of inverse equivalences.
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Cok• : C(S(R)) −→ C(F(R))

(Ker•,Cok•) is a pair of inverse equivalence

Cok• : K(S(R)) −→ K(F(R))

Cok• is an equivalence of homotopy categories.

X ∈ H(R) can be considered as an object of Rep(A2, R)
whenever A2 is the quiver • //// •

There is an equivalence

Cok• : K(DGPrj-A2)
∼=−→ K(DGPrjop-A2)
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So we define an auto-equivalence ψ : D(H(R)) −→ D(H(R)) as
composition of the following equivalence functors

D(H(R)) ∼= D(A2)
ψ // D(A2) ∼= D(H(R))

K(DGPrj-A2)

∼=

OO

Cok• // K(DGPrjop-A2)

∼=

OO

By using this equivalence we can define an equivalence

ψ0 : H(R) −→ H(R)

such that it is an extension of equivalence between S(R) and
F(R).
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D(H(R))
ψ // D(H(R))
ψ−1

mm

H(R)
?�

OO

ψ0 // H(R)
?�

OO

ψ−1
0

ll

S(R)
?�

OO

Cok // F(R)
?�

OO

Ker

ll
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H(R) the category of all maps f in mod-R

S(R) (resp. F(R)) the full subcategory of H(R) consisting
of all monomorphism (resp. epimorphism) maps.

P. Bahiraei Model structures on the category of complexes of quiver representations



Model structures and Hovey pairs
Homotopy category of model category

Model structure on C(Rep(Q,G))
Some descriptions of D(Q)

Morphism categories
References

H(R) the category of all maps f in mod-R

S(R) (resp. F(R)) the full subcategory of H(R) consisting
of all monomorphism (resp. epimorphism) maps.

Lemma:

Let R be a noetherian ring. Then we have the following
equivalence

K−,b(prjop-A2) ∼= Db(rep(A2, R)) ∼= Db(H(R))

where K−,b(prjop-A2) is the homotopy category of all bounded
above complexes with bounded homologies and all entries in
prjop-A2.
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H(R) the category of all maps f in mod-R

S(R) (resp. F(R)) the full subcategory of H(R) consisting
of all monomorphism (resp. epimorphism) maps.

Db(H(R))
ϕ // Db(H(R))
ϕ−1
mm

H(R)
?�

OO

ϕ0 // H(R)
?�

OO

ϕ−1
0

ll

S(R)
?�

OO

Cok // F(R)
?�

OO

Ker

ll
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Thank you all for your attention
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