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History and Preliminaries

The subject of determining structure of rings and algebras over which

all modules are direct sums of certain modules (such as simple, cyclic,

unuserial, uniform or indecomposible modules) has a long history.

One of the first important contributions in this direction is due to

Wedderburn and Artin.

Wedderburn [2] showed that every module over a finite-dimensional

K-algebra A is a direct sum of simple modules if and only if

A ∼=
∏m
i=1Mni(Di) where m,n1, . . . , nm ∈ N and each Di is

finite-dimensional division algebra over K. In 1927, E. Artin [1]

generalizes the Wedderburn’s theorem for semisimple algebras.

[1] Emil Artin, Zur Theorie der hyperkomplexen Zahlen, Abh. Math. Sem.

U. Hamburg (1927) 251-260.

[2] J. H. MacLagan Wedderburn, On hypercomplex numbers, Proc. London

Math. Soc. Ser. 2, 6 (1907) 77-118.

=======================================
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Rings, over which all modules are direct simple modules

(semisimple rings)

==================================

Wedderburn-Artin’s result is a landmark in the theory of

non-commutative rings. We recall this theorem as follows:

Wedderburn-Artin Theorem. For a ring R, the following conditions

are equivalent:

(1 ) The module RR is a direct sum of simple modules.

(1′) The module RR is a direct sum of simple modules.

(2 ) Every f.g left R-module is a direct sum of simple modules.

(2′) Every f.g right R-module is a direct sum of simple modules.

(3 ) Every left R-module is a direct sum of simple modules.

(3′) Every right R-module is a direct sum of simple modules.

(4 ) R ∼=
∏k
i=1Mni

(Di) where k, ni ∈ N and each Di is a division ring.
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Rings, over which all modules are direct sum of cyclics

(Köthe rings)

==================================

Another one is due to G. Köthe. He considered rings over which all

modules are direct sums of cyclic modules.

Theorem (Köthe [3]).Ovr er an Artinian principal ideal ring, each

module is a direct sum of cyclic modules. Furthermore, if a commutative

Artinian ring has the property that all its modules are direct sums of

cyclic modules, then it is necessarily a principal ideal ring.

[3] G. Köthe, Verallgemeinerte abelsche gruppen mit hyperkomplexen

operatorenring, Math. Z. 39 (1935) 31-44.
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Later I. S. Cohen and I. Kaplansky obtained the following.

Theorem (Cohen and Kaplansky [4]). If R is a commutative ring such

that each R-module is a direct sum of cyclic modules, then R must be an

Artinian principal ideal ring.

Result (Köthe-Cohen-Kaplansky). A commutative ring R is a Köthe

ring if and only if R is an Artinian principal ideal ring.

The corresponding problem in the non-commutative case is still open

[4] I. S. Cohen, I. Kaplansky, Rings for which every module is a direct sum

of cyclic modules, Math. Z. 54 (1951) 97-101.
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Rings, over which all finitely generated modules are

direct sum of cyclics (FGC-rings)

==================================

The question of which commutative rings have the property that

every finitely generated module is a direct sum of cyclic modules has

been around for many years. We will call these rings FGC-rings. The

problem originated in I. Kaplanskys papers [5] and [6].

Theorem. (See [7, Theorem 9.1]) A commutative ring R is an FGC-ring

exactly if it is a finite direct sum of commutative rings of the following kinds:

(a) maximal valuation rings;

(b) almost maximal Bézout domains;

(c) torch rings.

[5] I. Kaplansky, Elementary divisors and modules, Trans. Amer. Math.

Soc. 66, (1949) 464-491.

[6] I. Kaplansky, Modules over Dedekind rings and valuation rings, Trans.

Amer. Math. Soc. 72 (1952), 327-340.

[7] W. Brandal, Commutative Rings Whose Finitely Generated Modules

decompose, Lecture Notes in Mathematics, Vol. 723 (Springer, 1979).
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Rings, over which all modules are serial (direct sum of

uniserial modules)

==================================

Rings, over which all modules are serial, were first systematically

considered by T. Nakayama. A module M is called uniserial if its submodules are

linearly ordered by inclusion. Also M is called serial if it is a direct sum of uniserial modules.

Theorem. (Nakayama [8]). If R is an Artinian serial ring and n is the

nilpotency index of J(R), then every left R-module is a direct sum of uniserial

modules of length ≤ n.

The converse of the above result was also proved by Skornyakov in [9]. We

record that below.

Theorem. (Skornyakov [9]). If R is a ring such that all left R-modules are

serial, then R is an Artinian serial ring.

[8] T. Nakayama, On Frobeniusean algebras. II, Ann. Math. (2) 42 (1941),

1-21.

[9] L. A. Skornyakov, When are all modules serial, Mat. Zametki, 5 (1969),

173-182.
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Rings, over which all modules are are direct sums of

indecomposable modules

==================================

In the following, the implications (iii)⇒ (i), (ii) are due to I. S.

Cohen and I. Kaplansky [same Z. 54 (1951), 97101; MR0043073].

Theorem. (Warfield [10]). The following conditions on a commutative

ring R are shown to be equivalent:

(i) There is a cardinal number k such that every R-module is a direct

summand of a direct sum of k-generator modules;

(ii) Every R-module is a direct sum of indecomposable modules;

(iii) R is an Artinian principal ideal ring.

[10] Warfield, Robert B., Jr. Rings whose modules have nice

decompositions. Math. Z. 125 1972 187192.
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Rings, over which all modules are are direct sums of

uniform modules

==================================

Theorem. (Köthe-Cohen-Kaplansky-Nakayama-Skornyakov-Warfield

). The following conditions on a commutative ring R are shown to be

equivalent:

(i) Every R-module is a direct sum of cyclic modules;

(ii) Every R-module is a direct sum of indecomposable modules;

(iii) Every R-module is a direct sum of serial modules;

(iv) Every R-module is a direct sum of uniform modules;

(v) Every R-module is a direct sum of compleatly cyclic modules;

(vi) R is an Artinian principal ideal ring.

An R-module M is called completely cyclic if each submodule of M is

cyclic. Completely cyclic modules are obvious generalizations of

principal ideal rings.
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The First Motivation for Our Study

Now, some natural problems arise from this situation. Instead of

considering rings for which all modules are direct sums of simple,

cyclic, uniserial, uniform or indecomposable modules, we weaken these

conditions and study the structures of rings R for which it is assumed

only that the ideals or proper ideals of R are direct sums of such

modules. For instance, we will discuss the following natural questions

in the commutative cases:

(1) Which commutative rings have the property that every ideal is a

direct sum of cyclic modules?

(2) Which commutative rings have the property that every prime

ideal is a direct sum of cyclic modules?

(3) Which commutative rings have the property that every maximal

ideal is a direct sum of cyclic modules?

(4) Which commutative rings have the property that every (proper)

ideal is a direct sum of completly cyclic modules? 9



(5) Which commutative rings have the property that every ideal is

serial?

(6) Which commutative rings have the property that every proper

ideal is serial?

(7) Which commutative rings have the property that prime ideal is

serial?

(8) Which commutative rings have the property that every maximal

ideal is serial?

(9) Which commutative rings have the property that every proper

ideal a direct sum of uniform modules?

(10) Which commutative rings have the property that every proper

ideal a direct sum of indecomposable modules?
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Theorem . (BehboodiGhorbani-Moradzadeh) For a Noetherian

commutative local ring (R,M) the following statements are equivalent:

(1) Every ideal of R is a direct sum of cyclic R-modules.

(2) Every ideal of R is a direct sum of cyclic R-modules, at most two of

which are not simple.

(3) M = Rx⊕Ry ⊕ (
⊕n

i=1Rwi) with each Rwi a simple R-module

(4) Every ideal of R is a direct summand of a direct sum of cyclic

R-modules.

[11] M. Behboodi, A. Ghorbani and A. Moradzadeh-Dehkordi,

Commutative Noetherian local rings whose ideals are direct sums of

cyclic modules J. Algebra 345 (2011), 257-265
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Theorem . (Behboodi-Shojsee) For a commutative local ring (R,M)

the following statements are equivalent:

(1) Every ideal of R is a direct sum of cyclic R-modules.

(2) Every ideal of R is a direct sum of cyclic R-modules, at most two of

which are not simple.

(3) There is an index set Λ and a set of elements {x, y} ∪ {wλ}λ∈Λ ⊆ R
such thatM = Rx⊕Ry ⊕ (

⊕
λ∈ΛRwλ) with each Rwλ a simple

R-module, R/Ann(x) and R/Ann(y) principal ideal rings.

(4) Every ideal of R is a direct summand of a direct sum of cyclic

R-modules.

[12] M. Behboodi, A. Ghorbani, A. Moradzadeh-Dehkordi, and S. H.

Shojaee, On left Kothe rings and an analogue of the Cohen-Kaplansky

theorem Proc. Amer. Math. Soc. 142 (2014), 2625-2631

[13] M. Behboodi and S.H. Shojaee, Commutative local rings whose

ideals are direct sum of cyclic modules Algebr. Represent Theor. 17

(2014), 971-982
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Theorem . (Behboodi-Heidari-Roointan) For a commutative ring R

the following statements are equivalent:

(1) Every proper ideal of R is a direct sum of completely cyclic

R-modules.

(2) Either R is a principal ideal ring or (R,M) is a local ring such that

there is an index set Λ and a set of elements {x} ∪ {wλ}λ∈Λ ⊆ R such

thatM = Rx⊕ (
⊕

λ∈ΛRwλ) with each Rwλ a simple R-module and

R/Ann(x) a principal ideal ring.
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Theorems (Behboodi-Heidari) The following statements are equivalent for a

commutative ring R:

(1) Every proper ideal of R is serial.

(2) Either R is serial or R is a local ring with maximal ideal M such that there

is an index set Λ, a set of elements {wλ}λ∈Λ ⊆ R and a uniserial ideal U of R

such that M = U ⊕ (
⊕

λ∈Λ Rwλ) with: each Rwλ a simple R-module.

Theorems (Behboodi-Heidari) Let R be a commutative Noetherian ring.

Then the following statements are equivalent:

(1) Every proper ideal of R is serial.

(2) Either R is a finite direct products of discrete valuation domains and special

principal rings or (R,M) is a local ring such that M = Rx⊕ (
⊕n

i=1 Rwi) with

each Rwi a simple R-module and R/Ann(x) is a principal ideal ring.

(3) Either R is a serial ring or (R,M) is a local ring such that

M = U ⊕ (
⊕n

i=1 Rwi) with each Rwi a simple R-module and U is a uniserial

R-module.

(4) There is an integer n ≥ 1 such that every proper ideal of R is a direct sum

of at most n uniserial R-module. 14



Theorem (Behboodi-Daneshvar-Vedadi).The following statements are

equivalent for a commutative ring R:

(1) Every proper ideal of R is a virtually semisimple R-module.

(2) Every proper ideal of R is a direct sum of virtually simple R-modules.

(3) R is one of the following forms:

(i) R is virtually semisimple.

(ii) (R,M) is a local ring such that there exist an index set Λ and a set of

ele- ments {x}∪{yλ}λ∈Λ of R such that M = Rx⊕ (
⊕

λ∈Λ Ryλ) with:

every Ryλ a simple R-module and Rx a virtually simple R-module.

(4) R is one of the following forms:

(i) R is a finite direct product of principal ideal domains.

(ii) (R,M) is a local ring with M = Soc(R).

(iii) (R,M) is a local ring with M = Rx⊕ Soc(R) for some 0 6= x ∈ R and

every proper ideal of R is semisimple or is isomorphic to Rx⊕W ′ where

W ′ ≤ Soc(R).
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Rings, Whose Proper Ideals Are Direct Sums of

Uniform Modules

==================================

Theorem (Behboodi-Asgari). The following statements are equivalent

for a commutative local ring R.

(1) Every proper ideal of R is a direct sum of uniform modules.

(2) Either R is a (finite) direct sum of uniform modules or (R,M) is a

local ring and M = U ⊕ T , where U is uniform and T is semisimple.

Moreover, in the local case every proper ideal I of R has a

decomposition I = V ⊕W , where V is uniform and W is semisimple.
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The Second Motivation for Our Study

Using ∼= instant = for generalizing the notions of simple,

semisimple, uniserial, uniform, indecomposable and etl.

For instance, we introduced and study almost serial modules as a

generalizations of serial modules.

Note: A module M is semisimple if and only if every submodule of

M is a direct summand. In fact; a semisimple module is a type of

module that can be understood easily from its parts.

Motivation: This property motivates us to study rings and modules

for which every submodule is isomorphic to a direct summand.

In fact, we give the following generalization of semisimple modules.

=======================================

Definition. We say that an R-module M is virtually semisimple if

each submodule of M is isomorphic to a direct summand of M .

Example. The Z-module Z is virtually semisimple, but it is not

semisimple. This fact is true for each principal ideal domain (PID).

=======================================
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Note: A module M is semisimple if and only if it is a direct sum

(finite or not) of simple modules.

=======================================

This property motivates us to give the following definition.

Definition. We say that an R-module M is virtually simple or

(isosimple) if M 6= (0) and N ∼= M for each (0) 6= N ≤M .

=======================================

Note 1: A direct sum of virtually simple modules need not be virtually

semisimple.

Note 2: A virtually semisimple module need not be a direct sum of

virtually simple modules.

Note 3: A submodule of a virtually semisimple modules need not be

virtually semisimple.

Note 4: The class of virtually semisimple modules is not closed under

homomorphic image.
18



Counterexamples

Example 1. Let F be a field and we set R = F [[x, y]]/ < xy >. The

maximal ideal of R is a direct sum of two virtually simple R-module,

but it is not virtually semisimple.

Example 2. The Z-module Z is clearly virtually semisimple, but the

Z-module Z/4Z is not virtually semisimple.

Example 3. Let R = A1(F ), the first Weyl algebra over a field F with

characteristic zero, and let S = M2(R). By using several proposition,

we can see that S is a virtually semisimple left S-module, but there

exists a left ideal I of R such I is not virtually semisimple.

Example 4. By the notations of Example 3, S = M2(R) is a virtually

semisimple left S-module, but it is not a direct sum of virtually

simple modules.
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The above notes motivates us to give the following definitions

Definitions. We say that an R-module M is:

- completely virtually semisimple if each submodule of M is a virtually

semisimple module.

- fully virtually semisimple if each factor module of M is a virtually

semisimple module.

- isosemisimple if M is a direct sum of virtually simple (isosimple)

modules.

=======================================

Definitions. We say that a ring R is a:

- left virtually semisimple ring if RR is a virtually semisimple module.

- left completely virtually semisimple ring if RR is a completely

virtually semisimple module.

- left fully virtually semisimple ring if RR is a fully virtually

semisimple module.

- left isosemisimple ring if RR is a isoemisimple module.
20



The Wedderburn-Artin Structure Theorem motivated us to study

the following interesting natural questions:

Question 1. Characterize a left virtually semisimple ring.

Question 2. Characterize a left fully virtually semisimple ring.

Question 3. Characterize a left completely virtually semisimple ring.

Question 4. Characterize a left isosemisimple ring.

=======================================

Question 5. Is every left virtually semisimple ring also a right

virtually semisimple?

Question 6. Is every left fully virtually semisimple ring also a right

fully virtually semisimple?

Question 7. Is every left completely virtually semisimple ring also a

right completely virtually semisimple?

Question 8. Is every left isosemisimple ring also a right

isosemisimple?

======================================= 21



Characterize rings over which all left (right) modules are ......

Question 9. Characterize rings over which all left (right) modules are

virtually semisimple.

Question 10. Characterize rings over which all finitely generated left

(right) modules are virtually semisimple.

Question 11. Characterize rings over which all left (right) modules

are direct sums of virtually isimple modules.

Question 12. Characterize rings over which all injective modules are

virtually semisimple.

Question 13. Characterize rings over which all projective modules are

virtually semisimple.

Question 14. Whether the Krull-Schmidt Theorem holds for direct

sums of virtually simple modules?

and others.................................
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Some of our main results are as follows:

When every R-module is virtually semisimple.

Proposition. Every quasi-injective virtually semisimple module M is

semisimple.

Corollary. The following conditions are equivalent for a ring R.

(1) Every left (right) R-module is a direct sum of virtually simple

module.

(2) Every left (right) R-module is virtually semisimple.

(3) R is a semisimple ring.
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The First Generalization of the Wedderburn-Arttin Theorem

When R is a left isosemisimple ring.

When is a left completely virtually semisimple ring.

Theorem. The following statements are equivalent for a ring R.

(1) The left R-module R is a direct sum of virtually simple modules.

(2) R is a left completely virtually semisimple ring.

(3) R ∼=
∏k
i=1Mni

(Di) where k, n1, ..., nk ∈ N and each Di is a

principal left ideal domain.

Moreover, in the statement (3), the integers k, n1, ..., nk and the

principal left ideal domains D1, ..., Dk are uniquely determined (up to

isomorphism) by R.
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We recall that a ring R is called a left (resp., right) V-ring if each

simple left (resp., right) R-module is injective. We say that R is

V-ring if it is both left and right V-ring.

Remark. Although there exists an example of a non-domain which is

a left V -ring but not a right V -ring, the question whether a left

(right) V-domain is a right (left) V-domain remains open in general.

See [4], where the authors proved that the answer is positive for

principal ideal domains.

[3] S. K. Jain, K. S. Ashish, and A. T. Askar, Cyclic modules and the

structure of rings, Oxford University Press, 2012.
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The Second Generalization of the Wedderburn-Artin Theorem

When all f.g left R-modules are virtually semisimple.

When all f.g left R-modules are completely virtually semisimple.

Theorem. The following statements are equivalent for a ring R.

(1) All finitely generated left R-modules are virtually semisimple.

(1′) All finitely generated right R-modules are virtually semisimple.

(2) All finitely generated left R-modules are completely virtually

semisimple.

(2′) All finitely generated right R-modules are completely virtually

semisimple.

(3) R ∼=
∏k
i=1Mni

(Di) where each Di is a principal ideal V-domain.
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Cozzens’s Example

The following example, originally from Cozzens [2], shows that there

are principal ideal V -domains which are not division rings.

Example. Let K be a universal differential field with derivation d and

let D = K[y; d] denote the ring of differential polynomials in the

indeterminate y with coefficients in K, i.e., the additive group of

K[y; d] is the additive group of the ring of polynomials in the

indeterminate y with coefficients in field K, and multiplication in D is

defined by: ya = ay + d(a) for all a in K. It is shown that D is both

left and right principal ideal domain, the simple left D-modules are

precisely of the form Va = D/D(y − a) where a in K and each simple

left D-module is injective . Hence D is a left V -ring. Similarly, D is a

right V -ring.

[4] J. Cozzens, Ph.D. thesis, Rutgers, The State University, New

Brunswick, New Jersey, 1969.
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The Krull-Schmidt Theorem for virtually simple modules

Krull-Schmidt Theorem holds for direct sums of virtually simple

modules

Theorem. Let V1 ⊕ · · · ⊕ Vn = M = U1 ⊕ · · · ⊕ Um where all Vi’s and

Uj’s are virtually simple modules. Then n = m and there is a

permutation σ on {1, ..., n} such that Ui ∼= Vσ(i).

28



Some Applications

RM Completely virtually semisimple iff RM is a direct sum of

virtually simple modules.

As first important application of this theory, we give the following.

Proposition. Every finitely generated completely virtually semisimple

module is a direct sum of virtually simple modules.

Up to a permutation, the virtually simple components in such a direct

sum are uniquely determined up to isomorphism.

29



Second important application of this theory:

A fundamental structure theorem.

Theorem. The following statements are equivalent for a ring R.

(1) Every finitely generated left R-modules is a direct sum of virtually

simple modules.

(1′) Every finitely generated right R-modules is a direct sum of virtually

simple modules.

(2) R ∼=
∏k
i=1 Mni(Di) where k, n1, ..., nk ∈ N and each Di is a principal

ideal V-domain.

(3) Every finitely generated left R-modules is uniquely (up to isomorphism)

a direct sum of cyclic left R-modules that are either simple or virtually

simple direct summand of RR.

(3′)Every finitely generated right R-modules is uniquely (up to

isomorphism) a direct sum of cyclic left R-modules that are either simple or

virtually simple direct summand of RR.
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Finitely generated virtually semisimple modules over commuta-

tive rings

Proposition. Let M be a finitely generated module over commutative ring

R. Then M is a direct sum of virtually simple modules if and only if

M ∼=
⊕k

i=1 R/Pi where k ∈ N and each R/Pi is principal ideal domain.

The following is a structure theorem for finitely generated virtually

semisimple modules over commutative rings.

Theorem. Let M be a finitely generated module over a commutative ring R.

Then the following conditions are equivalent:

(1) M is virtually semisimple.

(2) M is completely virtually semisimple.

(3) M ∼=
⊕n

i=1 R/Pi where R/Pi is a principal ideal domain for all i and

for each pair i, j either Pi, Pj are comparable or Pi + Pj = R.

Proposition. Let M be a module over a commutative ring R. Then M is a

fully virtually semisimple if and only if M is semisimple.
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Thank you!
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