Involutive Bases and Its Applications

Amir Hashemi

Isfahan University of Technology & IPM

Seminar on Commutative Algebra and Related Topics, November 16, 2016

Amir Hashemi Involutive Bases and Its Applications

・ロン ・回 と ・ ヨ と ・ ヨ と

Outline of talk

- 2 Gröbner bases
 - Monomial Orderings
 - Gröbner Bases
 - Computation of Gröbner Bases
 - History of Gröbner Bases
 - Applications

Involutive Bases

- Involutive Division
- Involutive Bases
- Applications

/⊒ ▶ < ≣ ▶

What is algebraic geometry?

Studying geometric objects by means of algebraic tools and in particular studying polynomial systems

$$\begin{cases} f_1 = 0 \\ \vdots \\ f_k = 0. \end{cases}$$

This is a well-known geometric object. In this direction, we introduce *Gröbner bases* and *involutive bases*.

Notations

- \triangleright K; a field e.g. $K = \mathbb{R}, \mathbb{Q}, \ldots$
- $\triangleright x_1, \ldots, x_n$; a sequence of variables
- A polynomial is a sum of products of numbers and variables, e.g.

$$f = x_1 x_2 + 12x_1 - x_2^3$$

 $P = K[x_1, \dots, x_n]; \text{ set of all polynomials}$ $f_1, \dots, f_k \in R \text{ and } F = \{f_1, \dots, f_k\}$ $I = \langle F \rangle = \{p_1 f_1 + \dots + p_k f_k \mid p_i \in R\}$

Univariate Polynomial Ring

 $\bullet\,$ Let K be a field and K[x] the ring of polynomials in x

(1日) (日) (日)

- Let K be a field and K[x] the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle gcd(f_1, \ldots, f_k) \rangle$

イロト イヨト イヨト イヨト

- $\bullet\,$ Let K be a field and K[x] the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle gcd(f_1, \ldots, f_k) \rangle$
- K[x] is a PID, e.g. $\langle x-1, x^2-1\rangle = \langle x-1\rangle$

イロン イ部 とくほど くほとう ほ

- $\bullet\,$ Let K be a field and K[x] the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle gcd(f_1, \ldots, f_k) \rangle$
- K[x] is a PID, e.g. $\langle x-1, x^2-1\rangle = \langle x-1\rangle$
- Thus, gcd computations (using Euclid algorithm) can solve many problems in ${\cal K}[x]$

- 4 周 ト 4 ヨ ト 4 ヨ ト - ヨ

- $\bullet\,$ Let K be a field and K[x] the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle gcd(f_1, \ldots, f_k) \rangle$
- K[x] is a PID, e.g. $\langle x-1, x^2-1 \rangle = \langle x-1 \rangle$
- Thus, gcd computations (using Euclid algorithm) can solve many problems in K[x]
- Suppose that

$$f := x^3 - 6x^2 + 11x - 6$$
$$g := x^3 - 10x^2 + 29x - 20$$

- 4 周 ト 4 ヨ ト 4 ヨ ト - ヨ

- $\bullet\,$ Let K be a field and K[x] the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle gcd(f_1, \ldots, f_k) \rangle$
- K[x] is a PID, e.g. $\langle x-1, x^2-1\rangle = \langle x-1\rangle$
- Thus, gcd computations (using Euclid algorithm) can solve many problems in K[x]

Suppose that

$$f := x^3 - 6x^2 + 11x - 6$$
$$g := x^3 - 10x^2 + 29x - 20$$

• Since gcd(f,g) = x - 1, every information about $\langle f,g \rangle$ is given by $\langle x - 1 \rangle$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

- $\bullet\,$ Let K be a field and K[x] the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle gcd(f_1, \ldots, f_k) \rangle$
- K[x] is a PID, e.g. $\langle x-1, x^2-1\rangle = \langle x-1\rangle$
- Thus, gcd computations (using Euclid algorithm) can solve many problems in K[x]

Suppose that

$$f := x^3 - 6x^2 + 11x - 6$$
$$g := x^3 - 10x^2 + 29x - 20$$

- Since gcd(f,g) = x 1, every information about $\langle f,g \rangle$ is given by $\langle x - 1 \rangle$
- $\bullet\,$ For example, the only solution of f=g=0 is x=1

ヘロン 人間 とくほど くほとう

- Let K be a field and K[x] the ring of polynomials in x
- If $f_1, \ldots, f_k \in K[x]$ then $\langle f_1, \ldots, f_k \rangle = \langle gcd(f_1, \ldots, f_k) \rangle$
- K[x] is a PID, e.g. $\langle x-1, x^2-1\rangle = \langle x-1\rangle$
- Thus, gcd computations (using Euclid algorithm) can solve many problems in K[x]
- Suppose that

$$f := x^3 - 6x^2 + 11x - 6$$
$$g := x^3 - 10x^2 + 29x - 20$$

- Since gcd(f,g) = x 1, every information about $\langle f,g \rangle$ is given by $\langle x - 1 \rangle$
- For example, the only solution of f = g = 0 is x = 1
- Membership Problem: $x^2 1 \in \langle f, g \rangle$ because $x 1 \mid x^2 1$.

Two Questions

- $\mathbb{I} R = K[x_1, \dots, x_n]; \text{ a multivariate polynomial ring}$ $\mathbb{I} \{f_1, \dots, f_k\} \subset R; \text{ a finite set of polynomials}$ $\mathbb{I} \subset R; \text{ an ideal}$
 - Solving polynomial systems $f_1 = \cdots = f_k = 0$?
 - Membership problem: $h \in I$?
 - In practice, the answer to these questions is not easy!

(日) (同) (三) (三) (三)

Two Questions

- $\mathbb{I} R = K[x_1, \dots, x_n]; \text{ a multivariate polynomial ring}$ $\mathbb{I} \{f_1, \dots, f_k\} \subset R; \text{ a finite set of polynomials}$ $\mathbb{I} \subset R; \text{ an ideal}$
 - Solving polynomial systems $f_1 = \cdots = f_k = 0$?
 - Membership problem: $h \in I$?
 - In practice, the answer to these questions is not easy!
 - Gröbner bases can answer them!

(日) (同) (三) (三) (三)

Gröbner Bases

Amir Hashemi Involutive Bases and Its Applications

・ロン ・回 と ・ ヨ と ・ ヨ と

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Polynomial Ring

- ${\tt ISP} \ K \text{ a field}$
 - $\triangleright \mbox{ We denote the monomial } x_1^{\alpha_1}\cdots x_n^{\alpha_n} \mbox{ by } X^\alpha \mbox{ with } \alpha=(\alpha_1,\ldots,\alpha_n)$
 - $\triangleright \ \{\text{monomials in } R\} \leftrightarrow \mathbb{N}^n$

 \triangleright If X^{α} is a monomial and $a \in K$, then aX^{α} is a *term*

▷ A polynomial is a finite sum of terms.

 $\mathbb{R} R = K[x_1, \dots, x_n]$; the ring of all polynomials.

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Definition

A monomial ordering is a total ordering \prec on the set of monomials $X^{\alpha} = x_1^{\alpha_1} \cdots x_n^{\alpha_n}, \alpha = (\alpha_1, \dots, \alpha_n) \in \mathbb{N}^n$ such that,

•
$$X^{\alpha} \prec X^{\beta} \Rightarrow X^{\alpha+\gamma} \prec X^{\beta+\gamma}$$
 and

• \prec is well-ordering.

Lexicographical Ordering

 $X^{\alpha}\prec_{lex}X^{\beta}$ if leftmost nonzero of $\beta-\alpha$ is >0

$$x_1^2 x_2^3 \prec_{lex} x_1^3 x_2^2$$

(ロ) (個) (E) (E) (E)

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Notations

$$\mathbb{R} R = K[x_1, \dots, x_n], f \in R$$

- ${\bf k} {\bf k} I \subset R \text{ an ideal}$
- LM(f): The greatest monomial (with respect to \prec) in f $5x^3y^2 + 4x^2y^3 + xy + 1$

LM(I): $(LM(f) \mid f \in I)$; the leading monomial ideal of I.

・ロン ・回と ・ヨン ・ヨン

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Definition

- $\triangleright I \subset K[x_1,\ldots,x_n]$
- $ightarrow \prec$ A monomial ordering
- $$\label{eq:alpha} \begin{split} & \triangleright \ \mbox{A finite set } \{g_1,\ldots,g_t\} \subset I \ \mbox{is a Gröbner Basis for } I \\ & \mbox{w.r.t.} \ \prec, \ \mbox{if } \mathrm{LM}(I) = \langle \mathrm{LM}(g_1),\ldots,\mathrm{LM}(g_t) \rangle. \end{split}$$

Existence of Gröbner bases

Each ideal has a Gröbner basis

Example

$$\begin{split} I &= \langle xy - x, x^2 - y \rangle, \ y \prec_{lex} x \\ \mathrm{LM}(I) &= \langle xy, x^2, y^2 \rangle \\ &\equiv \forall f \in I \text{ either } x^2 \mid \mathrm{LM}(f) \text{ or } xy \mid \mathrm{LM}(f) \text{ or } y^2 \mid \mathrm{LM}(f) \\ \mathsf{A} \text{ Gröbner basis is: } \{xy - x, x^2 - y, y^2 - y\}. \end{split}$$

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Division Algorithm in $K[x_1, \ldots, x_n]$

Theorem

Fix a monomial ordering \prec and let $F := (f_1, \ldots, f_k)$ be an ordered k-tuple of polynomials in $K[x_1, \ldots, x_n]$ Then, every $f \in K[x_1, \ldots, x_n]$ can be written as

$$f = q_1 f_1 + \dots + q_k f_k + r$$

where $q_i, r \in K[x_1, \ldots, x_n]$ and either r = 0 or no term of r is divisible by any of $LM(f_1), \ldots, LM(f_k)$. We call r, the remainder on division of f by F.

ヘロン 人間 とくほど くほとう

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Algorithm 1 DIVISION ALGORITHM

Require: f, f_1, \ldots, f_k and \prec **Ensure:** q_1, \ldots, q_k, r $q_1 := 0; \cdots; q_k := 0;$ p := f;while $\exists f_i \text{ s.t. } LM(f_i)$ divides a term m in p do $q_i := q_i + \frac{m}{LM(f_i)}$ $p := p - (\frac{m}{LM(f_i)})f_i$ end while return q_1, \ldots, q_k, p

イロト イヨト イヨト イヨト

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Example

• Divide $f = xy^2 + 1$ by $f_1 = xy + 1, f_2 = y + 1$ and $y \prec_{lex} x$

Amir Hashemi Involutive Bases and Its Applications

◆□→ ◆圖→ ◆厘→ ◆厘→ ---

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Example

- Divide $f = xy^2 + 1$ by $f_1 = xy + 1, f_2 = y + 1$ and $y \prec_{lex} x$
- $f \to (xy^2 + 1) y(xy + 1) = 1 y \to (1 y) + (y + 1) = 2$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Example

- Divide $f = xy^2 + 1$ by $f_1 = xy + 1, f_2 = y + 1$ and $y \prec_{lex} x$
- $f \to (xy^2 + 1) y(xy + 1) = 1 y \to (1 y) + (y + 1) = 2$
- So we can write f = y(xy+1) + (-1)(y+1) + 2

イロト イポト イヨト イヨト

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Buchberger's Criterion

Definition

S-polynomial

$$\begin{split} \text{Spoly}(f,g) &= \frac{x^{\gamma}}{\text{LM}(f)} f - \frac{x^{\gamma}}{\text{LM}(g)} g \\ x^{\gamma} &= lcm(\text{LM}(f), \text{LM}(g)) \end{split}$$

 $Spoly(x^{3}y^{2}+xy^{3},xyz-z^{3}) = z(x^{3}y^{2}+xy^{3}) - x^{2}y(xyz-z^{3}) = zxy^{3} + x^{2}yz^{3} + x^{2}yz^$

Buchberger's Criterion

 \triangleright G is a Gröbner basis for $\langle G \rangle$

 $\triangleright \ \forall g_i, g_j \in G$, remainder $((\text{Spoly}(g_i, g_j), G) = 0)$

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Algorithm 2 BUCHBERGER'S ALGORITHM

```
Require: F := (f_1, \ldots, f_s) and \prec
Ensure: A Gröbner basis for the ideal \langle f_1, \ldots, f_s \rangle w.r.t. \prec
  G := F
  B := \{\{f, q\} | f, q \in F\}
  while B \neq \emptyset do
     Select and remove a pair \{f, g\} from B
     Let r be the remainder of Spoly(f, q) by F
     if r \neq 0 then
        B := B \cup \{\{h, r\} \mid h \in G\}
        G := G \cup \{r\}
     end if
  end while
  return G
```

(1日) (日) (日)

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Example

$$\begin{split} I &= \langle f_1, f_2 \rangle = \langle xy - x, x^2 - y \rangle \quad y \prec_{lex} x \\ G &:= \{ f_1, f_2 \} \\ \text{Spoly}(f_1, f_2) &= x f_1 - y f_2 = y^2 - x^2 \xrightarrow{f_2} y^2 - y = f_3 \\ G &:= \{ f_1, f_2, f_3 \} \\ \text{Spoly}(f_i, f_j) \xrightarrow{G} 0 \end{split}$$

 $G:=\{f_1,f_2,f_3\}$ is a Gröbner basis for I

(ロ) (同) (E) (E) (E)

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Buchberger, 65 :

- Developing the theory of Gröbner bases
- Buchberger criteria

Lazard, 83:

• Using linear algebra

Gebauer, Möller, 88 :

• Installing Buchberger criteria

Faugère, 99, 02 :

- F₄ algorithm (intensive linear algebra)
- F₅ algorithm

イロト イヨト イヨト

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Basis for quotient rings

 ${}^{\hbox{\tiny \rm I\!S\!S}} I \subset K[x_1,\ldots,x_n]$ an ideal and \prec a monomial ordering on R

Theorem (Macaulay's theorem)

The set of all monomials $m \text{ s.t. } m \notin LM(I)$ is a basis for R/I as a K-vector space. Indeed, $R/I \simeq R/LM(I)$ as K-vector space isomorphism.

Example

$$\vartriangleright \ I = \langle xy - x, x^2 - y \rangle, \ y \prec_{lex} x$$

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Basis for quotient rings

 ${}^{\scriptstyle \hbox{\tiny I\!S\!S}} I \subset K[x_1,\ldots,x_n]$ an ideal and \prec a monomial ordering on R

Theorem (Macaulay's theorem)

The set of all monomials $m \text{ s.t. } m \notin LM(I)$ is a basis for R/I as a K-vector space. Indeed, $R/I \simeq R/LM(I)$ as K-vector space isomorphism.

0

Example

▷
$$I = \langle xy - x, x^2 - y \rangle$$
, $y \prec_{lex} x$
▷ The Gröbner basis of I is
 $G = \{xy - x, x^2 - y, y^2 - y\}$
⇒ $LM(I) = \langle x^2, xy, y^2 \rangle$ and therefore $\{1, x, y\}$ is a
basis for R/I as a K -vector space.

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Ideal Membership

Theorem

$$f \in I \text{ iff } f \rightsquigarrow_G 0 \text{ where } G \text{ is a GB of } I$$

Example

$$\triangleright I = \langle xy - x, x^2 - y \rangle$$
$$\triangleright y^2 + y \in I?$$

・ロト ・回ト ・ヨト ・ヨト

æ

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Ideal Membership

Theorem

$$f \in I \text{ iff } f \rightsquigarrow_G 0 \text{ where } G \text{ is a GB of } I$$

Example

$$\begin{array}{l} \triangleright \ \ I = \langle xy - x, x^2 - y \rangle \\ \triangleright \ \ y^2 + y \in I? \\ \triangleright \ \ y \prec_{lex} x \\ \triangleright \ \ \text{The Gröbner basis of } I \text{ is } \\ G = \{xy - x, x^2 - y, y^2 - y\} \\ \Rightarrow \ y^2 + y \rightsquigarrow_G 2y \neq 0 \text{, and thus } y^2 + y \notin I. \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

æ

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Ideal Membership (cont.)

Theorem (Weak Hilbert's Nullstellensätz)

 $f_1 = \dots = f_k = 0$ has no solution iff $\Leftrightarrow 1 \in \langle f_1, \dots, f_k \rangle \Leftrightarrow 1 \in G$

Example

$$\{x^2 + 3y + z - 1, x - 3y^2 - z^2, x - y, y^2 - zxy - x, x^2 - y\}$$

$$I = \langle f_1, f_2, f_3, f_4 \rangle$$

$$\triangleright \ z \prec_{lex} y \prec_{lex} x$$

- ▷ The Gröbner basis of I is = $\{1\}$
- \Rightarrow The system $f_1 = f_2 = f_3 = f_4 = 0$ has no solution!

(ロ) (同) (E) (E) (E)

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Radical Membership

$$I = \langle f_1, \dots, f_k \rangle \subset K[x_1, \dots, x_n]$$

Theorem

$$f \in \sqrt{I} \text{ iff } 1 \in \langle f_1, \dots, f_k, 1 - wf \rangle \subset K[x_1, \dots, x_n, w]$$

Example

$$\triangleright I = \langle xy^2 + 2y^2, x^4 - 2x^2 + 1 \rangle$$

$$\flat f = y - x + 1 \in \sqrt{I?}$$

・ロト ・回ト ・ヨト ・ヨト

э

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

Radical Membership

$$I = \langle f_1, \dots, f_k \rangle \subset K[x_1, \dots, x_n]$$

Theorem

$$f \in \sqrt{I}$$
 iff $1 \in \langle f_1, \dots, f_k, 1 - wf \rangle \subset K[x_1, \dots, x_n, w]$

Example

$$\begin{array}{l} \triangleright \ \ I = \langle xy^2 + 2y^2, x^4 - 2x^2 + 1 \rangle \\ \triangleright \ \ f = y - x + 1 \in \sqrt{I}? \\ \triangleright \ \ \text{The Gröbner basis of } I + \langle 1 - wf \rangle \text{ is } \{1\} \\ \Rightarrow \ f \in \sqrt{I} \text{ (indeed } f^3 \in I). \end{array}$$

・ロト ・回ト ・ヨト ・ヨト

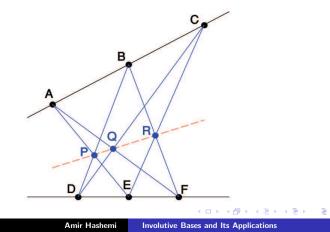
э

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

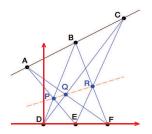
Automatic Geometry Theorem Proving

Example

Pappus theorem: P, Q and R are collinear



Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications



Coordinate of points: D := (0,0) $E := (u_1,0)$ $F := (u_2,0)$ $A := (u_3, u_4)$ $B := (u_5, u_6)$ $C := (u_7, x_1)$ $P := (x_2, x_3)$ $Q := (x_4, x_5)$ $R := (x_6, x_7)$

イロン 不同と 不同と 不同と

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

• Since A, B, C are collinear, we have $\frac{u_5-u_3}{u_6-u_4} = \frac{u_7-u_3}{x_1-u_4}$ and so from the collinearity of points we obtain:

<ロ> (四) (四) (三) (三) (三)

æ

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

- Since A, B, C are collinear, we have $\frac{u_5-u_3}{u_6-u_4} = \frac{u_7-u_3}{x_1-u_4}$ and so from the collinearity of points we obtain:
- Hypothesis polynomials

$$h_{1} := x_{1}u_{3} + u_{6}u_{7} - u_{6}u_{3} - x_{1}u_{5} - u_{4}u_{7} + u_{4}u_{5} = 0$$

$$h_{2} := u_{4}u_{1} + x_{3}u_{3} - x_{3}u_{1} - u_{4}x_{2} = 0$$

$$h_{3} := u_{5}x_{3} - u_{6}x_{2} = 0$$

$$h_{4} := u_{4}u_{2} + x_{5}u_{3} - x_{5}u_{2} - u_{4}x_{4} = 0$$

$$h_{5} := u_{7}x_{5} - x_{1}x_{4} = 0$$

$$h_{6} := u_{6}u_{2} + x_{7}u_{5} - x_{7}u_{2} - u_{6}x_{6} = 0$$

$$h_{7} := x_{1}u_{1} + x_{7}u_{7} - x_{7}u_{1} - x_{1}x_{6} = 0$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

- Since A, B, C are collinear, we have $\frac{u_5-u_3}{u_6-u_4} = \frac{u_7-u_3}{x_1-u_4}$ and so from the collinearity of points we obtain:
- Hypothesis polynomials

$$h_{1} := x_{1}u_{3} + u_{6}u_{7} - u_{6}u_{3} - x_{1}u_{5} - u_{4}u_{7} + u_{4}u_{5} = 0$$

$$h_{2} := u_{4}u_{1} + x_{3}u_{3} - x_{3}u_{1} - u_{4}x_{2} = 0$$

$$h_{3} := u_{5}x_{3} - u_{6}x_{2} = 0$$

$$h_{4} := u_{4}u_{2} + x_{5}u_{3} - x_{5}u_{2} - u_{4}x_{4} = 0$$

$$h_{5} := u_{7}x_{5} - x_{1}x_{4} = 0$$

$$h_{6} := u_{6}u_{2} + x_{7}u_{5} - x_{7}u_{2} - u_{6}x_{6} = 0$$

$$h_{7} := x_{1}u_{1} + x_{7}u_{7} - x_{7}u_{1} - x_{1}x_{6} = 0$$

Conclusion polynomial

$$f := x_7 x_2 + x_5 x_6 - x_5 x_2 - x_7 x_4 - x_3 x_6 + x_3 x_4 = 0$$

イロン 不同と 不同と 不同と

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

$$\triangleright I := \langle h_1, \dots, h_r \rangle \subset \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$$

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

$$\triangleright I := \langle h_1, \dots, h_r \rangle \subset \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$$

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

$$\triangleright I := \langle h_1, \dots, h_r \rangle \subset \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$$

Theorem

Conclusion is true iff $f \in \sqrt{I}$ iff the Gröbner basis of

 $\langle h_1, \ldots, h_r, 1 - wf \rangle \subset \mathbb{C}(u_1, \ldots, u_m)[x_1, \ldots, x_n, w]$

equals to $\{1\}$

・ロト ・回ト ・ヨト ・ヨト

Monomial Orderings Gröbner Bases Computation of Gröbner Bases History of Gröbner Bases Applications

$$\triangleright I := \langle h_1, \dots, h_r \rangle \subset \mathbb{C}[x_1, \dots, x_n, u_1, \dots, u_m]$$

Theorem

Conclusion is true iff $f \in \sqrt{I}$ iff the Gröbner basis of

$$\langle h_1, \ldots, h_r, 1 - wf \rangle \subset \mathbb{C}(u_1, \ldots, u_m)[x_1, \ldots, x_n, w]$$

equals to $\{1\}$

The Gröbner basis of

$$\langle h_1,\ldots,h_7,1-wf\rangle\subset\mathbb{C}(u_1,\ldots,u_7)[x_1,\ldots,x_7,w]$$

is $\{1\}$, and therefore the Pappus theorem is true.

・ロト ・同ト ・ヨト

∃ >

Involutive Division Involutive Bases Applications

Involutive Bases

Amir Hashemi Involutive Bases and Its Applications

æ

Involutive Division Involutive Bases Applications

Involutive division

is $R = K[x_1, \ldots, x_n]$ a polynomial ring, $u, v \in U$ set of monomials

Definition (Gerdt-Blinkov, 1998)

An involutive division \mathcal{L} (denoted by $|_{\mathcal{L}}$) on monomials of R is a separation $M_{\mathcal{L}}(u, U) \cup NM_{\mathcal{L}}(u, U) = \{x_1, \dots, x_n\}$: $\mathcal{L}(u, U)$: set of all monomials in $M_{\mathcal{L}}(u, U)$ $u\mathcal{L}(u, U) \cap v\mathcal{L}(v, U) \neq \emptyset \Longrightarrow u \in v\mathcal{L}(v, U)$ or $v \in u\mathcal{L}(u, U)$, $v \in U, v \in u\mathcal{L}(u, U) \Longrightarrow \mathcal{L}(v, U) \subset \mathcal{L}(u, U)$, $u \in V$ and $V \subset U \Longrightarrow \mathcal{L}(u, U) \subset \mathcal{L}(u, V)$,

イロン イ部 とくほど イヨン 二日

Involutive Division Involutive Bases Applications

Main idea

The idea is to partition $\{x_1,\ldots,x_n\}$ into two subsets of

- Multiplicative variables
- **2** Non-multiplicative variables

・ロン ・回 と ・ ヨ と ・ ヨ と

Involutive Division Involutive Bases Applications

Main idea

The idea is to partition $\{x_1, \ldots, x_n\}$ into two subsets of

- Multiplicative variables
- **2** Non-multiplicative variables

↓ We restrict the usual division

 $u|_{\mathcal{L}}v$ if u|v and $\frac{v}{u}$ contains only multiplicative variables

イロト イポト イヨト イヨト

Involutive Division Involutive Bases Applications

Example

$$\mathbb{R} M_{\mathcal{P}}(x_1^{\alpha_1}\cdots x_k^{\alpha_k}) = \{x_k, \dots x_n\}$$

Example (Pommaret division)

$$U = \{x_1^2 x_3, x_1 x_2, x_1 x_3^2\}, \ u = x_1 x_2, \ R = K[x_1, x_2, x_3]$$

- $\{x_2, x_3\}$ multiplicative
- $\{x_1\}$ non-multiplicative
- $x_1x_2|_{\mathcal{P}}x_1x_2^2$ because $x_1x_2^2/x_1x_2 = x_2$ is in terms of $\{x_2, x_3\}$
- $x_1x_2 \not\mid_{\mathcal{P}} x_1^2 x_2$ because $x_1^2 x_2 / x_1 x_2 = x_1$ is not in terms of multiplicative

< 三→

Involutive Division Involutive Bases Applications

Example

$$\mathbb{R} M_{\mathcal{P}}(x_1^{\alpha_1}\cdots x_k^{\alpha_k}) = \{x_k, \dots x_n\}$$

Example (Pommaret division)

$$U = \{x_1^2 x_3, x_1 x_2, x_1 x_3^2\}, \ u = x_1 x_2, \ R = K[x_1, x_2, x_3]$$

- $\{x_2, x_3\}$ multiplicative
- $\{x_1\}$ non-multiplicative
- $x_1x_2|_{\mathcal{P}}x_1x_2^2$ because $x_1x_2^2/x_1x_2 = x_2$ is in terms of $\{x_2, x_3\}$
- $x_1x_2 \not\mid_{\mathcal{P}} x_1^2 x_2$ because $x_1^2 x_2 / x_1 x_2 = x_1$ is not in terms of multiplicative

Example

Different kinds of involutive divisions have been proposed such as Janet, Thomas, (depending on the set U), Pommaret and Noether.

Involutive Division Involutive Bases Applications

Involutive bases

Definition

 $G \subset I$ a Gröbner basis for I if $\forall f \in I, \exists g \in G, \operatorname{LM}(g) | \operatorname{LM}(f)$

・ロト ・回ト ・ヨト ・ヨト

Involutive Division Involutive Bases Applications

Involutive bases

Definition

 $G \subset I$ a *Pommaret basis* for I if $\forall f \in I, \exists g \in G, \operatorname{LM}(g)|_{\mathcal{P}}\operatorname{LM}(f)$

Amir Hashemi Involutive Bases and Its Applications

◆□ > ◆□ > ◆臣 > ◆臣 > ○

Involutive Division Involutive Bases Applications

Involutive bases

Definition

 $G \subset I$ a *Pommaret basis* for I if $\forall f \in I, \exists g \in G, \operatorname{LM}(g)|_{\mathcal{P}}\operatorname{LM}(f)$

Example

 $I=\langle x_1^2,x_2^2\rangle$, then $\{x_1^2,x_2^2,x_1x_2^2\}$ is the Pommaret basis.

< ロ > < 回 > < 回 > < 回 > < 回 > <

Involutive Division Involutive Bases Applications

Involutive bases

Definition

 $G \subset I$ a *Pommaret basis* for I if $\forall f \in I, \exists g \in G, \operatorname{LM}(g)|_{\mathcal{P}}\operatorname{LM}(f)$

Example

$$I=\langle x_1^2,x_2^2\rangle$$
 , then $\{x_1^2,x_2^2,x_1x_2^2\}$ is the Pommaret basis.

Theorem

Pommaret bases do not always exist but only in a generic position.

・ロン ・回と ・ヨン・

Involutive Division Involutive Bases Applications

Quasi stable ideals

Definition (Quasi-stable ideal)

A monomial ideal $J \subset R$ is called *quasi-stable* if $\forall m \in J, \forall i \text{ with } x_i^s \mid m, \exists t \text{ s.t. } x_i^t(m/x_i^s) \in J \text{ for all } j < i.$

Example

$$I = \langle x_1^2, x_2^2 \rangle$$
 is quasi-stable because $x_1^2(x_2^2/x_2^2) \in J$.

Theorem (Seiler, 2009)

An ideal has a finite Pommaret basis iff it is quasi-stable.

・ロト ・回ト ・ヨト ・ヨト

Involutive Division Involutive Bases Applications

History of involutive bases

[Zharkov and Blinkov, 96] :

- involutive polynomial bases
- the first algorithm

[Gerdt and Blinkov, 98] :

• general concept of involutive division

[Seiler, 09] :

• comprehensive study (of PB) and applications

- 4 回 ト 4 ヨ ト 4 ヨ ト

Involutive Division Involutive Bases Applications

Gröbner bases vs. involutive bases

Gröbner bases

- Basis for R/I as a K-vector space
- Hilbert function
- Elimination Theory
- **2** Pommaret bases (due to its generic nature)
 - ⊃ a Gröbner basis
 - Stanley decomposition
 - depth of ideal
 - satiety
 - Castelnuovo-Mumford regularity.

▲同 ▶ ▲ 臣 ▶

Involutive Division Involutive Bases Applications

Stanley decomposition

$$\mathbb{R} M_{\mathcal{P}}(x_1^{\alpha_1}\cdots x_k^{\alpha_k}) = \{x_k, \dots x_n\}$$

Definition

A Stanley decomposition for R/I is a K-linear isomorphism

$$R/I \simeq \bigoplus_{t \in T} K[X_t].t$$

where T is a finite set of monomials and $X_t \subset \{x_1, \ldots, x_n\}$

Example

$$I = \langle f_1 = x_1^3, f_2 = x_1^2 x_2 - x_1^2 x_3, f_3 = x_2^2 - x_2 x_3, f_4 = x_1 x_2^2 - x_1 x_2 x_3 \rangle$$

$$I = K[x_1, x_2, x_3].f_1 \oplus K[x_2, x_3].f_2 \oplus K[x_2, x_3].f_3 \oplus K[x_2, x_3].f_4$$

・ロン ・回と ・ヨン・

Involutive Division Involutive Bases Applications

Stanley decomposition

$$\mathbb{T} M_{\mathcal{P}}(x_1^{\alpha_1}\cdots x_k^{\alpha_k}) = \{x_k, \dots x_n\}$$

Definition

A Stanley decomposition for R/I is a K-linear isomorphism

$$R/I \simeq \bigoplus_{t \in T} K[X_t].t$$

where T is a finite set of monomials and $X_t \subset \{x_1, \ldots, x_n\}$

Example

$$\begin{split} I &= \langle f_1 = x_1^3, f_2 = x_1^2 x_2 - x_1^2 x_3, f_3 = x_2^2 - x_2 x_3, f_4 = x_1 x_2^2 - x_1 x_2 x_3 \rangle \\ R/I &\simeq K \oplus K. x_1 \oplus K. x_2 \oplus K. x_3 \oplus K. x_1^2 \oplus K. x_1 x_2 \oplus K[x_3]. x_3^3 \oplus \\ K[x_3]. x_1 x_3^2 \oplus K[x_3]. x_2 x_3^2 \oplus K[x_3]. x_1^2 x_3 \oplus K[x_3] x_1 x_2 x_3 \end{split}$$

We can read off the dimension and Hilbert series of R/I.

Involutive Division Involutive Bases Applications

Cohen-Macaulayness

Definition

The *depth* of I is the maximum integer λ so that there exists a a regular sequence of linear forms y_1, \ldots, y_{λ} on R/I.

Theorem (Seiler, 2009)

The depth of an ideal generated by a Pommaret basis is n-t with t the maximum index of the elements of H. In addition, x_{t+1}, \ldots, x_n form a regular sequence on R/I

Example

 $I = \langle x_1^3, x_1^2 x_2 - x_1^2 x_3, x_2^2 - x_2 x_3, x_1 x_2^2 - x_1 x_2 x_3 \rangle$. The maximum index is 2 and depth(I) = 3 - 2 = 1. Since dim(I) = depth(I) then R/I is Cohen-Macaulay and x_3 is regular on R/I.

Involutive Division Involutive Bases Applications

Satiety

Definition

If $I^{\text{sat}} := I : \langle x_1, \dots, x_n \rangle^{\infty}$ then $\operatorname{sat}(I)$ is the smallest m so that for each $t \ge m$ we have $I_t^{\text{sat}} = I_t$.

Theorem (Seiler, 2009)

Let I be an ideal generated by a Pommaret basis H. Let $H_1 = \{h \in H | x_n \text{ divides } h\}$. Then, $\operatorname{sat}(I) = \operatorname{sat}(\operatorname{LM}(I))$ and $\operatorname{sat}(I) = \operatorname{deg}(H_1)$.

Example

 $I = \langle x_1^3, x_1^2 x_2 - x_1^2 x_3, x_2^2 - x_2 x_3, x_1 x_2^2 - x_1 x_2 x_3 \rangle$. Since the Pommaret basis has no element divisible by x_3 then I is saturated and sat(I) = 0.

Involutive Division Involutive Bases Applications

Castelnuovo-Mumford regularity

Definition

An ideal I is *m*-regular, if \exists a minimal graded free resolution: $0 \longrightarrow \bigoplus_j R(e_{rj}) \longrightarrow \cdots \longrightarrow \bigoplus_j R(e_{1j}) \longrightarrow \bigoplus_j R(e_{0j}) \longrightarrow I \longrightarrow 0$ of I such that $e_{ij} - i \le m$ for each i, j. Then, $\operatorname{reg}(I) = \min\{m \mid I \text{ is } m\text{-regular }\}.$

Theorem (Seiler, 2009)

Let I be an ideal generated by a Pommaret basis H. Then, $\operatorname{reg}(I) = \operatorname{reg}(\operatorname{LM}(I)) = \max\{\operatorname{deg}(h) \mid h \in H\}.$

Example

$$I = \langle x_1^3, x_1^2 x_2 - x_1^2 x_3, x_2^2 - x_2 x_3, x_1 x_2^2 - x_1 x_2 x_3 \rangle \text{ and } \operatorname{reg}(I) = 3.$$

Involutive Division Involutive Bases Applications

References

1 David Cox, John Little and Donal O'Shea: Ideals, varieties, and algorithms. Springer-Verlag, 2006. 2 David Cox, John Little and Donal O'Shea: Using algebraic geometry. Springer-Verlag, 2005. [3] Thomas Becker and Volker Weispfenning: Gröbner bases, A computational approach to commutative algebra. Springer-Verlag, 1993. [4] Werner M. Seiler: Involution. Speringer-Verlag, 2010.

(本間) (本語) (本語)