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Gröbner bases

Involutive Bases

What is algebraic geometry?

Studying geometric objects by means of algebraic tools and in
particular studying polynomial systems











f1 = 0
...

fk = 0.

This is a well-known geometric object. In this direction, we
introduce Gröbner bases and involutive bases.
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Notations

✄ K; a field e.g. K = R,Q, . . .

✄ x1, . . . , xn; a sequence of variables

✄ A polynomial is a sum of products of numbers and
variables, e.g.

f = x1x2 + 12x1 − x32

✄ R = K[x1, . . . , xn]; set of all polynomials

✄ f1, . . . , fk ∈ R and F = {f1, . . . , fk}

✄ I = 〈F 〉 = {p1f1 + · · ·+ pkfk | pi ∈ R}
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Univariate Polynomial Ring

Let K be a field and K[x] the ring of polynomials in x
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Univariate Polynomial Ring

Let K be a field and K[x] the ring of polynomials in x

If f1, . . . , fk ∈ K[x] then 〈f1, . . . , fk〉 = 〈gcd(f1, . . . , fk)〉
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Univariate Polynomial Ring

Let K be a field and K[x] the ring of polynomials in x

If f1, . . . , fk ∈ K[x] then 〈f1, . . . , fk〉 = 〈gcd(f1, . . . , fk)〉
K[x] is a PID, e.g. 〈x− 1, x2 − 1〉 = 〈x− 1〉
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Univariate Polynomial Ring

Let K be a field and K[x] the ring of polynomials in x

If f1, . . . , fk ∈ K[x] then 〈f1, . . . , fk〉 = 〈gcd(f1, . . . , fk)〉
K[x] is a PID, e.g. 〈x− 1, x2 − 1〉 = 〈x− 1〉
Thus, gcd computations (using Euclid algorithm) can solve
many problems in K[x]
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Gröbner bases

Involutive Bases

Univariate Polynomial Ring

Let K be a field and K[x] the ring of polynomials in x

If f1, . . . , fk ∈ K[x] then 〈f1, . . . , fk〉 = 〈gcd(f1, . . . , fk)〉
K[x] is a PID, e.g. 〈x− 1, x2 − 1〉 = 〈x− 1〉
Thus, gcd computations (using Euclid algorithm) can solve
many problems in K[x]

Suppose that
f := x3 − 6x2 + 11x− 6

g := x3 − 10x2 + 29x− 20
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Univariate Polynomial Ring

Let K be a field and K[x] the ring of polynomials in x

If f1, . . . , fk ∈ K[x] then 〈f1, . . . , fk〉 = 〈gcd(f1, . . . , fk)〉
K[x] is a PID, e.g. 〈x− 1, x2 − 1〉 = 〈x− 1〉
Thus, gcd computations (using Euclid algorithm) can solve
many problems in K[x]

Suppose that
f := x3 − 6x2 + 11x− 6

g := x3 − 10x2 + 29x− 20

Since gcd(f, g) = x− 1,
every information about 〈f, g〉 is given by 〈x− 1〉
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Involutive Bases

Univariate Polynomial Ring

Let K be a field and K[x] the ring of polynomials in x

If f1, . . . , fk ∈ K[x] then 〈f1, . . . , fk〉 = 〈gcd(f1, . . . , fk)〉
K[x] is a PID, e.g. 〈x− 1, x2 − 1〉 = 〈x− 1〉
Thus, gcd computations (using Euclid algorithm) can solve
many problems in K[x]

Suppose that
f := x3 − 6x2 + 11x− 6

g := x3 − 10x2 + 29x− 20

Since gcd(f, g) = x− 1,
every information about 〈f, g〉 is given by 〈x− 1〉
For example, the only solution of f = g = 0 is x = 1
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Univariate Polynomial Ring

Let K be a field and K[x] the ring of polynomials in x

If f1, . . . , fk ∈ K[x] then 〈f1, . . . , fk〉 = 〈gcd(f1, . . . , fk)〉
K[x] is a PID, e.g. 〈x− 1, x2 − 1〉 = 〈x− 1〉
Thus, gcd computations (using Euclid algorithm) can solve
many problems in K[x]

Suppose that
f := x3 − 6x2 + 11x− 6

g := x3 − 10x2 + 29x− 20

Since gcd(f, g) = x− 1,
every information about 〈f, g〉 is given by 〈x− 1〉
For example, the only solution of f = g = 0 is x = 1

Membership Problem: x2 − 1 ∈ 〈f, g〉 because x− 1 | x2 − 1.
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Two Questions

☞ R = K[x1, . . . , xn]; a multivariate polynomial ring
☞ {f1, . . . , fk} ⊂ R; a finite set of polynomials
☞ I ⊂ R; an ideal

Solving polynomial systems f1 = · · · = fk = 0 ?

Membership problem: h ∈ I?

In practice, the answer to these questions is not easy!
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Gröbner bases

Involutive Bases

Two Questions

☞ R = K[x1, . . . , xn]; a multivariate polynomial ring
☞ {f1, . . . , fk} ⊂ R; a finite set of polynomials
☞ I ⊂ R; an ideal

Solving polynomial systems f1 = · · · = fk = 0 ?

Membership problem: h ∈ I?

In practice, the answer to these questions is not easy!

Gröbner bases can answer them!
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Polynomial Ring

☞ K a field

✄ We denote the monomial xα1

1
· · · xαn

n by Xα with
α = (α1, . . . , αn)

✄ {monomials in R} ↔ Nn

✄ If Xα is a monomial and a ∈ K, then aXα is a term

✄ A polynomial is a finite sum of terms.

☞ R = K[x1, . . . , xn]; the ring of all polynomials.
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Gröbner bases

Involutive Bases

Monomial Orderings
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Definition

A monomial ordering is a total ordering ≺ on the set of monomials
Xα = xα1

1
· · · xαn

n ,α = (α1, . . . , αn) ∈ Nn such that,

Xα ≺ Xβ ⇒ Xα+γ ≺ Xβ+γ and

≺ is well-ordering.

Lexicographical Ordering

Xα ≺lex Xβ if leftmost nonzero of β − α is > 0

Example
x21x

3
2 ≺lex x31x

2
2
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Notations

☞ R = K[x1, . . . , xn], f ∈ R

☞ ≺ a monomial ordering on R

☞ I ⊂ R an ideal

LM(f): The greatest monomial (with respect to ≺) in f
5x3y2 + 4x2y3 + xy + 1

LM(I): 〈LM(f) | f ∈ I〉; the leading monomial ideal of I.
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Applications

Definition

✄ I ⊂ K[x1, . . . , xn]

✄ ≺ A monomial ordering

✄ A finite set {g1, . . . , gt} ⊂ I is a Gröbner Basis for I
w.r.t. ≺, if LM(I) = 〈LM(g1), . . . ,LM(gt)〉.

Existence of Gröbner bases

Each ideal has a Gröbner basis

Example

I = 〈xy − x, x2 − y〉, y ≺lex x
LM(I) = 〈xy, x2, y2〉
≡ ∀f ∈ I either x2 | LM(f) or xy | LM(f) or y2 | LM(f)
A Gröbner basis is: {xy − x, x2 − y, y2 − y}.
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History of Gröbner Bases
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Division Algorithm in K[x1, . . . , xn]

Theorem

Fix a monomial ordering ≺ and let F := (f1, . . . , fk) be an ordered

k−tuple of polynomials in K[x1, . . . , xn] Then, every
f ∈ K[x1, . . . , xn] can be written as

f = q1f1 + · · ·+ qkfk + r

where qi, r ∈ K[x1, . . . , xn] and either r = 0 or no term of r is

divisible by any of LM(f1), . . . ,LM(fk). We call r, the remainder

on division of f by F .
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Algorithm 1 Division Algorithm

Require: f, f1, . . . , fk and ≺
Ensure: q1, . . . , qk, r
q1 := 0; · · · ; qk := 0;
p := f ;
while ∃fi s.t. LM(fi) divides a term m in p do

qi := qi +
m

LM(fi)

p := p− ( m
LM(fi)

)fi
end while

return q1, . . . , qk, p
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Example

Divide f = xy2 + 1 by f1 = xy + 1, f2 = y + 1 and y ≺lex x
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Example

Divide f = xy2 + 1 by f1 = xy + 1, f2 = y + 1 and y ≺lex x

f → (xy2 + 1)− y(xy + 1) = 1− y → (1− y) + (y + 1) = 2
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Example

Divide f = xy2 + 1 by f1 = xy + 1, f2 = y + 1 and y ≺lex x

f → (xy2 + 1)− y(xy + 1) = 1− y → (1− y) + (y + 1) = 2

So we can write f = y(xy + 1) + (−1)(y + 1) + 2
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Buchberger’s Criterion

Definition

S-polynomial

Spoly(f, g) =
xγ

LM(f)
f − xγ

LM(g)
g

xγ = lcm(LM(f),LM(g))

Spoly(x3y2+xy3, xyz−z3) = z(x3y2+xy3)−x2y(xyz−z3) = zxy3+x2yz3

Buchberger’s Criterion

✄ G is a Gröbner basis for 〈G〉
✄ ∀gi, gj ∈ G, remainder((Spoly(gi, gj), G) = 0

Amir Hashemi Involutive Bases and Its Applications
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Algorithm 2 Buchberger’s Algorithm

Require: F := (f1, . . . , fs) and ≺
Ensure: A Gröbner basis for the ideal 〈f1, . . . , fs〉 w.r.t. ≺

G := F
B := {{f, g}|f, g ∈ F}
while B 6= ∅ do

Select and remove a pair {f, g} from B
Let r be the remainder of Spoly(f, g) by F
if r 6= 0 then

B := B ∪ {{h, r} | h ∈ G}
G := G ∪ {r}

end if

end while

return G
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Example

I = 〈f1, f2〉 = 〈xy − x, x2 − y〉 y ≺lex x

G := {f1, f2}

Spoly(f1, f2) = xf1 − yf2 = y2 − x2
f2−−−−→ y2 − y = f3

G := {f1, f2, f3}

Spoly(fi, fj)
G−−−−→ 0

G := {f1, f2, f3} is a Gröbner basis for I
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Buchberger, 65 :

Developing the theory of Gröbner bases
Buchberger criteria

Lazard, 83 :

Using linear algebra

Gebauer, Möller, 88 :

Installing Buchberger criteria

Faugère, 99, 02 :

F4 algorithm (intensive linear algebra)
F5 algorithm
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Basis for quotient rings

☞ I ⊂ K[x1, . . . , xn] an ideal and ≺ a monomial ordering on R

Theorem (Macaulay’s theorem)

The set of all monomials m s.t. m /∈ LM(I) is a basis for R/I as a

K-vector space. Indeed, R/I ≃ R/LM(I) as K-vector space

isomorphism.

Example

✄ I = 〈xy − x, x2 − y〉, y ≺lex x

Amir Hashemi Involutive Bases and Its Applications
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Gröbner Bases
Computation of Gröbner Bases
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Basis for quotient rings

☞ I ⊂ K[x1, . . . , xn] an ideal and ≺ a monomial ordering on R

Theorem (Macaulay’s theorem)

The set of all monomials m s.t. m /∈ LM(I) is a basis for R/I as a

K-vector space. Indeed, R/I ≃ R/LM(I) as K-vector space

isomorphism.

Example

✄ I = 〈xy − x, x2 − y〉, y ≺lex x

✄ The Gröbner basis of I is
G = {xy − x, x2 − y, y2 − y}

⇒ LM(I) = 〈x2, xy, y2〉 and therefore {1, x, y} is a
basis for R/I as a K-vector space.

Amir Hashemi Involutive Bases and Its Applications
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Gröbner bases

Involutive Bases

Monomial Orderings
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Ideal Membership

Theorem

f ∈ I iff f ❀G 0 where G is a GB of I

Example

✄ I = 〈xy − x, x2 − y〉
✄ y2 + y ∈ I?

Amir Hashemi Involutive Bases and Its Applications
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Gröbner Bases
Computation of Gröbner Bases
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Ideal Membership

Theorem

f ∈ I iff f ❀G 0 where G is a GB of I

Example

✄ I = 〈xy − x, x2 − y〉
✄ y2 + y ∈ I?

✄ y ≺lex x

✄ The Gröbner basis of I is
G = {xy − x, x2 − y, y2 − y}

⇒ y2 + y ❀G 2y 6= 0, and thus y2 + y /∈ I.
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Ideal Membership (cont.)

Theorem (Weak Hilbert’s Nullstellensätz)

f1 = · · · = fk = 0 has no solution iff ⇔ 1 ∈ 〈f1, . . . , fk〉 ⇔ 1 ∈ G

Example

✄ {x2+3y+z−1, x−3y2−z2, x−y, y2−zxy−x, x2−y}
✄ I = 〈f1, f2, f3, f4〉
✄ z ≺lex y ≺lex x

✄ The Gröbner basis of I is = {1}
⇒ The system f1 = f2 = f3 = f4 = 0 has no solution!

Amir Hashemi Involutive Bases and Its Applications
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Radical Membership

☞ I = 〈f1, . . . , fk〉 ⊂ K[x1, . . . , xn]

Theorem

f ∈
√
I iff 1 ∈ 〈f1, . . . , fk, 1− wf〉 ⊂ K[x1, . . . , xn, w]

Example

✄ I = 〈xy2 + 2y2, x4 − 2x2 + 1〉
✄ f = y − x+ 1 ∈

√
I?
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Gröbner bases

Involutive Bases

Monomial Orderings
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Radical Membership

☞ I = 〈f1, . . . , fk〉 ⊂ K[x1, . . . , xn]

Theorem

f ∈
√
I iff 1 ∈ 〈f1, . . . , fk, 1− wf〉 ⊂ K[x1, . . . , xn, w]

Example

✄ I = 〈xy2 + 2y2, x4 − 2x2 + 1〉
✄ f = y − x+ 1 ∈

√
I?

✄ The Gröbner basis of I + 〈1− wf〉 is {1}
⇒ f ∈

√
I (indeed f3 ∈ I).

Amir Hashemi Involutive Bases and Its Applications



Introduction
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Automatic Geometry Theorem Proving

Example

Pappus theorem: P,Q and R are collinear
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Coordinate of points:
D := (0, 0) E := (u1, 0) F := (u2, 0)
A := (u3, u4) B := (u5, u6) C := (u7, x1)
P := (x2, x3) Q := (x4, x5) R := (x6, x7)
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Gröbner Bases
Computation of Gröbner Bases
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Since A,B,C are collinear, we have u5−u3

u6−u4
= u7−u3

x1−u4
and so

from the collinearity of points we obtain:

Amir Hashemi Involutive Bases and Its Applications
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Since A,B,C are collinear, we have u5−u3

u6−u4
= u7−u3

x1−u4
and so

from the collinearity of points we obtain:

Hypothesis polynomials

h1 := x1u3 + u6u7 − u6u3 − x1u5 − u4u7 + u4u5 = 0
h2 := u4u1 + x3u3 − x3u1 − u4x2 = 0
h3 := u5x3 − u6x2 = 0
h4 := u4u2 + x5u3 − x5u2 − u4x4 = 0
h5 := u7x5 − x1x4 = 0
h6 := u6u2 + x7u5 − x7u2 − u6x6 = 0
h7 := x1u1 + x7u7 − x7u1 − x1x6 = 0

Amir Hashemi Involutive Bases and Its Applications
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Since A,B,C are collinear, we have u5−u3

u6−u4
= u7−u3

x1−u4
and so

from the collinearity of points we obtain:

Hypothesis polynomials

h1 := x1u3 + u6u7 − u6u3 − x1u5 − u4u7 + u4u5 = 0
h2 := u4u1 + x3u3 − x3u1 − u4x2 = 0
h3 := u5x3 − u6x2 = 0
h4 := u4u2 + x5u3 − x5u2 − u4x4 = 0
h5 := u7x5 − x1x4 = 0
h6 := u6u2 + x7u5 − x7u2 − u6x6 = 0
h7 := x1u1 + x7u7 − x7u1 − x1x6 = 0

Conclusion polynomial
f := x7x2 + x5x6 − x5x2 − x7x4 − x3x6 + x3x4 = 0

Amir Hashemi Involutive Bases and Its Applications
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Gröbner Bases
Computation of Gröbner Bases
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✄ I := 〈h1, . . . , hr〉 ⊂ C[x1, . . . , xn, u1, . . . , um]
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Gröbner Bases
Computation of Gröbner Bases
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✄ I := 〈h1, . . . , hr〉 ⊂ C[x1, . . . , xn, u1, . . . , um]

Theorem

Conclusion is true iff f ∈
√
I iff the Gröbner basis of

〈h1, . . . , hr, 1− wf〉 ⊂ C(u1, . . . , um)[x1, . . . , xn, w]

equals to {1}
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✄ I := 〈h1, . . . , hr〉 ⊂ C[x1, . . . , xn, u1, . . . , um]

Theorem

Conclusion is true iff f ∈
√
I iff the Gröbner basis of

〈h1, . . . , hr, 1− wf〉 ⊂ C(u1, . . . , um)[x1, . . . , xn, w]

equals to {1}

The Gröbner basis of

〈h1, . . . , h7, 1− wf〉 ⊂ C(u1, . . . , u7)[x1, . . . , x7, w]

is {1}, and therefore the Pappus theorem is true.
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Involutive division

☞ R = K[x1, . . . , xn] a polynomial ring, u, v ∈ U set of monomials

Definition (Gerdt-Blinkov, 1998)

An involutive division L (denoted by |L) on monomials of R is a
separation ML(u,U) ∪NML(u,U) = {x1, . . . , xn}:

L(u,U): set of all monomials in ML(u,U)

uL(u,U) ∩ vL(v, U) 6= ∅ =⇒ u ∈ vL(v, U) or v ∈ uL(u,U),

v ∈ U, v ∈ uL(u,U) =⇒ L(v, U) ⊂ L(u,U),

u ∈ V and V ⊂ U =⇒ L(u,U) ⊂ L(u, V ),
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Main idea

The idea is to partition {x1, . . . , xn} into two subsets of

1 Multiplicative variables

2 Non-multiplicative variables
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Main idea

The idea is to partition {x1, . . . , xn} into two subsets of

1 Multiplicative variables

2 Non-multiplicative variables

⇓
We restrict the usual division

u|Lv if u|v and v
u
contains only multiplicative variables
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Example

☞ MP(x
α1

1
· · · xαk

k ) = {xk, . . . xn}

Example (Pommaret division)

U = {x21x3, x1x2, x1x23}, u = x1x2, R = K[x1, x2, x3]
{x2, x3} multiplicative

{x1} non-multiplicative

x1x2|Px1x22 because x1x
2
2/x1x2 = x2 is in terms of {x2, x3}

x1x2 6 |Px21x2 because x21x2/x1x2 = x1 is not in terms of
multiplicative
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Example

☞ MP(x
α1

1
· · · xαk

k ) = {xk, . . . xn}

Example (Pommaret division)

U = {x21x3, x1x2, x1x23}, u = x1x2, R = K[x1, x2, x3]
{x2, x3} multiplicative

{x1} non-multiplicative

x1x2|Px1x22 because x1x
2
2/x1x2 = x2 is in terms of {x2, x3}

x1x2 6 |Px21x2 because x21x2/x1x2 = x1 is not in terms of
multiplicative

Example

Different kinds of involutive divisions have been proposed such as
Janet, Thomas, (depending on the set U), Pommaret and Noether.
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Involutive bases

Definition

G ⊂ I a Gröbner basis for I if ∀f ∈ I,∃g ∈ G,LM(g)|LM(f)
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Involutive bases

Definition

G ⊂ I a Pommaret basis for I if ∀f ∈ I,∃g ∈ G,LM(g)|PLM(f)
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Involutive bases

Definition

G ⊂ I a Pommaret basis for I if ∀f ∈ I,∃g ∈ G,LM(g)|PLM(f)

Example

I = 〈x21, x22〉, then {x21, x22, x1x22} is the Pommaret basis.
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Involutive bases

Definition

G ⊂ I a Pommaret basis for I if ∀f ∈ I,∃g ∈ G,LM(g)|PLM(f)

Example

I = 〈x21, x22〉, then {x21, x22, x1x22} is the Pommaret basis.

Theorem

Pommaret bases do not always exist but only in a generic position.
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Quasi stable ideals

Definition (Quasi-stable ideal)

A monomial ideal J ⊂ R is called quasi-stable if
∀m ∈ J, ∀i with xsi | m, ∃t s.t. xtj(m/xsi ) ∈ J for all j < i.

Example

I = 〈x21, x22〉 is quasi-stable because x21(x
2
2/x

2
2) ∈ J .

Theorem (Seiler, 2009)

An ideal has a finite Pommaret basis iff it is quasi-stable.
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History of involutive bases

[Zharkov and Blinkov, 96] :

involutive polynomial bases
the first algorithm

[Gerdt and Blinkov, 98] :

general concept of involutive division

[Seiler, 09] :

comprehensive study (of PB) and applications
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Gröbner bases vs. involutive bases

1 Gröbner bases
• Basis for R/I as a K-vector space
• Hilbert function
• Elimination Theory

2 Pommaret bases (due to its generic nature)
• ⊃ a Gröbner basis
• Stanley decomposition
• depth of ideal
• satiety
• Castelnuovo-Mumford regularity.
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Stanley decomposition

☞ MP(x
α1

1
· · · xαk

k ) = {xk, . . . xn}

Definition

A Stanley decomposition for R/I is a K-linear isomorphism

R/I ≃ ⊕

t∈T K[Xt].t

where T is a finite set of monomials and Xt ⊂ {x1, . . . , xn}

Example

I = 〈f1 = x3
1, f2 = x2

1x2 − x2
1x3, f3 = x2

2 − x2x3, f4 = x1x
2
2 − x1x2x3〉

I = K[x1, x2, x3].f1 ⊕K[x2, x3].f2 ⊕K[x2, x3].f3 ⊕K[x2, x3].f4
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Stanley decomposition

☞ MP(x
α1

1
· · · xαk

k ) = {xk, . . . xn}

Definition

A Stanley decomposition for R/I is a K-linear isomorphism

R/I ≃ ⊕

t∈T K[Xt].t

where T is a finite set of monomials and Xt ⊂ {x1, . . . , xn}

Example

I = 〈f1 = x3
1, f2 = x2

1x2 − x2
1x3, f3 = x2

2 − x2x3, f4 = x1x
2
2 − x1x2x3〉

R/I ≃ K ⊕K.x1 ⊕K.x2 ⊕K.x3 ⊕K.x21 ⊕K.x1x2 ⊕K[x3].x
3
3 ⊕

K[x3].x1x
2
3 ⊕K[x3].x2x

2
3 ⊕K[x3].x

2
1x3 ⊕K[x3]x1x2x3

We can read off the dimension and Hilbert series of R/I.
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Gröbner bases

Involutive Bases

Involutive Division
Involutive Bases
Applications

Cohen-Macaulayness

Definition

The depth of I is the maximum integer λ so that there exists a a
regular sequence of linear forms y1, . . . , yλ on R/I.

Theorem (Seiler, 2009)

The depth of an ideal generated by a Pommaret basis is n− t with
t the maximum index of the elements of H. In addition,

xt+1, . . . , xn form a regular sequence on R/I

Example

I = 〈x31, x21x2 − x21x3, x
2
2 − x2x3, x1x

2
2 − x1x2x3〉. The maximum

index is 2 and depth(I) = 3− 2 = 1. Since dim(I) = depth(I)
then R/I is Cohen-Macaulay and x3 is regular on R/I.
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Satiety

Definition

If Isat := I : 〈x1, . . . , xn〉∞ then sat(I) is the smallest m so that
for each t ≥ m we have Isatt = It.

Theorem (Seiler, 2009)

Let I be an ideal generated by a Pommaret basis H. Let

H1 = {h ∈ H| xn divides h}. Then, sat(I) = sat(LM(I)) and
sat(I) = deg(H1).

Example

I = 〈x31, x21x2 − x21x3, x
2
2 − x2x3, x1x

2
2 − x1x2x3〉. Since the

Pommaret basis has no element divisible by x3 then I is saturated
and sat(I) = 0.
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Castelnuovo-Mumford regularity

Definition

An ideal I is m-regular, if ∃ a minimal graded free resolution:
0 −→ ⊕

j R(erj) −→ · · · −→ ⊕

j R(e1j) −→
⊕

j R(e0j) −→ I −→ 0

of I such that eij − i ≤ m for each i, j. Then,
reg(I) = min{m |I is m-regular }.

Theorem (Seiler, 2009)

Let I be an ideal generated by a Pommaret basis H. Then,

reg(I) = reg(LM(I)) = max{deg(h) | h ∈ H}.

Example

I = 〈x31, x21x2 − x21x3, x
2
2 − x2x3, x1x

2
2 − x1x2x3〉 and reg(I) = 3.
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