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Introduction

For any k-algebra A, there is a cohomology theory providing
modules T i (A) for i = 0, 1, 2.

T 0(A) = Derk(A,A).

T 1(A) characterizes the first order deformations of A.

T 2(A) contains the obstructions for lifting these
deformations to decent parameter spaces.

In this talk we study these modules when A is the quotient of a
polynomial ring k[x1, . . . , xn] by a quadratic monomial ideal I .

A quadratic monomial ideal is an ideal generated by monomials
of degree 2.
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A quadratic monomial ideal I in a polynomial ring
R = k[x1, . . . , xn] gives rise to a (not necessarily simple) graph
G = (V (G ),E (G )) where V (G ) = {x1, . . . , xn} and
E (G ) = {{xi , xj} | xixj ∈ I}.

We use the combinatorics of the corresponding graph to
describe

1 a generating set for the first cotangent cohomology
module of the ring R/I ;

2 characterize rigid edge ideals of graphs;

3 vanishing results for the second cotangent cohomology
module.
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Polarization

Let I be a monomial ideal in a polynomial ring R = k[X ] where
X = {x1, . . . , xn} is a set of indeterminates.
Let G (I ) = {g1, . . . , gr} be the set of minimal generators of I
and for each i = 1, . . . , n let ei be the highest power of xi
among the elements of G (I ).
Let S = R[yi ,j |i = 1, . . . , n; j = 2, . . . , ei ] be a new polynomial
ring containing R.
Now for g ∈ G (I ) if g = xa1

1 · · · xann then define

g̃ = x
min{a1,1}
1 y1,2 · · · y1,a1 · · · x

min{an,1}
n yn,2 · · · yn,an .

The ideal J defined by g̃1, . . . , g̃n in S is called the polarization
of I .
Note that the variable differences xi − yi ,j are regular elements
of S/J.
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Separations

Let I be a monomial ideal in the polynomial ring R = k[X ].
Let x ∈ X be an indeterminate of R and let y be an
indeterminate over R.
A monomial ideal J in S = R[y ] is a called a separation of I at
the variable x if

1 I is the image of J under the k-algebra map S → R
sending y to x and any other variable of S to itself,

2 x and y occur in some minimal generators of J and

3 y − x is a regular element of the quotient ring S/J.

We shall call a succession of separations also a separation.

Polarization is a separation.
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Let I be an ideal in a polynomial ring R. Let J ⊆ R[y ] be a
separation of I at variable x .
We apply the coordinate change y  x + t and we get an ideal
Ĩ ⊆ R[t] such that R[y ]/J ∼= R[t]/Ĩ .
Since y − x is a nonzero divisor on R[y ]/J, t is a nonzero
divisor on R[t]/Ĩ . Hence R[t]/Ĩ is flat over k[t].
Furthermore,

R[t]

Ĩ
⊗k[t]

k[t]

(t)
=

R[t]

Ĩ
⊗R[t]R[t]⊗k[t]

k[t]

(t)
=

R[t]

Ĩ
⊗R[t]

R[t]

(t)
=

R

I
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Deformations

Let I be an ideal in a k-algebra R. Let B be another k-algebra
with a distinguished k-point b ∈ SpecB corresponding to a
morphism B → k. A deformation of I over B is an ideal J in
R ⊗k B satisfying the following

1 (R ⊗k B)/J is flat over B,

2 the natural map R ⊗k B → R induces an isomorphism
(R ⊗k B)/J ⊗B k→ R/I .

If B is a local Artinian k-algebra such that B/mB
∼= k then a

deformation over B is called an infinitesimal deformation.
A deformation over the local Artinian ring k[ε] = k[t]/(t2) is
called a first order deformation of R/I .

A separation J of an ideal I at a variable x is a flat deformation
of I over the polynomial ring k[t].
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One can iterate the separation of an ideal I until getting an
inseparable ideal J in a larger polynomial ring.

Question

Does the ideal J have any further deformations?

The parameter ring k[t] is quite big to study the deformations
of an ideal.

Instead it is better to start with the smallest possible parameter
ring, i.e. the ring of dual numbers k[ε] = k[t]/(t2).
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Suppose J ⊆ R[ε] is an ideal such that

R[ε]/J ⊗k[ε] k[t]/(t) ∼= R/I .

If I = (f1, . . . , fr ) then J = (f1 + g1ε, . . . , fr + gr ε) and R[ε]/J
is flat over k[ε] if and only if the map sending fi 7→ gi + I
defines a well-defined R-module homomorphism I → R/I .

Therefore the set of first order deformations of R/I are in
one-to-one correspondence with elements of HomR(I ,R/I ).
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First cotangent cohomology module

Let I = (f1, . . . , fr ) be an ideal in a polynomial ring R and let
A = R/I . Let Derk(R) be the module of derivations of R.
There is a map

δ∗ : Derk(R) −→ HomR(I ,R/I )

which sends ∂ to the homomorphism sending fi 7→ ∂fi + I for
i = 1 . . . , r .
The cokernel of the map δ∗ is called the first cotangent
cohomology module of A and it is denoted by T 1(A).
A homomorphisms in HomR(I ,R/I ) is called a trivial first order
deformation if it lies in the image of δ∗.
Therefore T 1(A) characterizes all the nontrivial first order
deformations of A.
A ring A = R/I as well as the ideal I is called rigid if T 1(A)
vanishes.
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Deformation theory of square-free monomial ideals have been
studied by Klaus Altmann and Jan Arthur Christophersen,
[2, 3].
If I is a square-free monomial ideal in a polynomial ring
R = k[x1, . . . , xn] then T 1(R/I ) is Zn-graded.

Let c ∈ Zn be a multidegree and suppose c = a− b with
a,b ∈ Nn and Supp a ∩ Suppb = ∅. Recall that for a
multidegree a = (a1, . . . , an) ∈ Zn, Supp a = {i ∈ [n]|ai 6= 0}.
We have

Theorem (Altmann and Christophersen - 2004, [2])

1 if b /∈ {0, 1}n then T 1(R/I )a−b = 0;

2 if b ∈ {0, 1}n then T 1(R/I )a−b = T 1(lk∆ Supp a)−b.
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First order deformations of graphs - Type I

Let ab be an edge of G . The vertices a and b of edge ab are
not necessarily distinct.
For a vertex v let N(v) denote the neighborhood of v .
Let Λ = (N(a)\{b}) ∪ (N(b)\{a}).
For any g ∈ Λ let Λg be the set all vertices adjacent to g other
than a and b, i.e. Λg = N(g)\{a, b}.
Let |Λ| = d . Any ordered d-tuple (x1, . . . , xd) in

∏
g∈Λ Λg gives

a monomial x1 · · · xd .
Now define Λab as

Λab = {
√
m | m ∈

∏
g∈Λ

Λg}.

If Λ = ∅ that is when ab is an isolated edge or an isolated loop
then Λab = {1}.
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Now for λ ∈ Λab, we define a linear map

φλab : I2 → R/I

which sends ab to λ and any other minimal generator of I to
zero.

Lemma

The map φλab algebraically extends to a well-defined
homomorphism in HomR(I ,R/I ). Furthermore, if φλab is
nonzero then it corresponds to a nontrivial deformation.

For any λ ∈ Λab, we call φλab a type I deformation associated
with the edge ab.
When there is no confusion we denote φλab simply by ab 7→ λ.
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First order deformations of graphs - Type II

Let a ∈ V (G ) be a vertex. Let N(a) be the neighborhood of a.
Let GN(a) be the induced subgraph of G on the vertex set N(a).
We denote the complementary graph of the underlying simple
graph of GN(a) by N(a). Let L be a nonempty subset of the

vertex set of N(a).
Let Γ(L) be the set of all vertices in N(a) which are adjacent to
some vertex of L but does not belong to L.
For any g ∈ Γ(L), let Γg be the set of vertices adjacent to g
other than a.
Let

Γa,L = {
√
m | m ∈

∏
g∈Γ

Γg}.



Cotangent
cohomology of

quadratic
monomial

ideals

Amin
Nematbakhsh

Polarization,
separations
and
deformations

First
cotangent
cohomology

Rigidity

Second
cotangent
cohomology

Now define a linear map

φλa,L : I2 → R/I

by

φλa,L(e) =

{
λx e = ax and x ∈ L

0 otherwise.

Lemma

The map φλa,L algebraically extends to a well-defined
homomorphism in HomR(I ,R/I ).

For any λ ∈ Γa,L we call φλa,L a type II deformation associated
with the vertex a.
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Theorem

As ab varies in the set of edges of G and a varies in the set of
vertices of G, the homomorphisms φλab for λ ∈ Λab alongside
with the homomorphisms φλa,L for nonempty L ⊆ V (N(a)) and
λ ∈ Γa,L define a generating set for HomR(I ,R/I ).
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Recall that a leaf vertex is a vertex of degree 1. We call an
edge a leaf if it contains a leaf vertex.

Lemma

Let a be a vertex of graph G with no loop on it. Suppose
either

1 vertex a does not lie on any 3-cycle, or

2 vertex a belongs to a leaf,

then the derivation ∂
∂a is the only deformation of type II

associated with a.

We call an edge having a common vertex with a leaf a branch.

Lemma

If an edge ab is a branch then there is no nonzero type I
deformation associated with edge ab.
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Rigidity of edge ideals of graphs

Suppose G is not a simple graph and G has a loop on some
vertex x .
If N(x) 6= {x}, then the separation at x is a nontrivial
deformation and G is not algebraically rigid.
Now suppose N(x) = {x}, i.e. the loop on x is an isolated
loop. In this case the separation at x is a trivial deformation
but the type I deformation φ1

a2 is a nontrivial deformation.
It follows that non square-free quadratic monomial ideals are
never rigid.
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Let G be a simple graph on vertex set x1, . . . , xn and let
R = k[x1, . . . , xn] be a polynomial ring on variables xi .
The neighborhood of a set X of vertices of G is defined to be
N(X ) = ∪x∈XN(x), and the closed neighborhood of X is
defined to be N[X ] = X ∪ N(X ).
We also denote the induced subgraph of G on the vertex set
V (G )\X by G\X .

Theorem (Altmann, Bigdeli, Herzog and Lu - 2016, [1])

R/I (G ) is rigid if and only if any independent subset X of G
satisfies both of the following conditions.

1 N(x) is connected for all vertex x of graph G\N[X ];

2 G\N[X ] contains no isolated edge.
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Characterization of rigid graphs

Theorem

Let I be the edge ideal of a simple graph G. I is rigid if and
only if

1 for each edge ab of G,∏
x∈Λab

Λx ⊆ I , and

2 for each vertex a of G and subset L ⊆ V (N(a)),( ∏
x∈Γ(L)

Γx

)
×
(
V (N(a))\(L ∪ Γ(L)

)
⊆ I .
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Theorem (Altmann, Bigdeli, Herzog and Lu - 2016, [1])

Let G be a simple graph such that G does not contain any
induced cycle of length 4,5 or 6. Then G is rigid if and only if
each edge of G is a branch and each vertex of a 3-cycle of G
belongs to a leaf.
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Second cotangent cohomology module

Let
0 −→ K −→ Rm j−→ R −→ A −→ 0

be an exact sequence presenting A as an R-module. Let
ε1, . . . , εm be a basis for Rm and let K0 be the submodule of K
generated by relations j(εi )εj − j(εj)εi for all i 6= j ,
1 ≤ i , j ≤ m. These relations are called the Koszul relations.
The cokernel of the map

Φ : HomR(Rm,A) −→ HomA(K/K0,A)

is called the second cotangent cohomology module of A and is
denoted by T 2(A).
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We fix a total order ≺ on E (G ) the edge set of G . For
ab ∈ E (G ), let εab be the standard basis of Rm. As a
submodule of Rm, K is generated by relations rab,bc and rab,cd
defined below,

1 for ab, bc ∈ I with ab ≺ bc,
rab,bc = rbc,ab = −cεab + aεbc and,

2 for ab, cd ∈ I with ab ≺ cd ,
rab,cd = rcd ,ab = −cdεab + abεcd .

The relations of second form are Koszul relations and they
vanish in the sub-quotient K/K0.
Therefore any minimal generator of K/K0 can be denoted by
two adjacent edges ab and bc of G .
For a subset F of edges of G and for an edge ab ∈ F , σ(F , ab)
is defined to be the number of elements less than ab in the
totally ordered set (F ,≺).
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Let I be the edge ideal of a graph G and let ab be an edge of
G . Let La (resp. Lb) be a subset of N(a)\{b} (resp.
N(b)\{a}) and La (resp. Lb) be its complement. We shall
choose La and Lb such that for any vertex z ∈ N(a) ∩ N(b) we
have z ∈ La if and only if z ∈ Lb.
We define

∆a = {x ∈ La | ∃ y ∈ Lb s.t. xy /∈ I or ∃y ∈ La s.t. xy /∈ I}

and similarly

∆b = {x ∈ Lb | ∃ y ∈ La s.t. xy /∈ I or ∃y ∈ Lb s.t. xy /∈ I}.

Let ∆ = ∆a ∪∆b. We define homomorphisms in
HomR(K/K0,R/I ) without making any further choices.
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For any x ∈ ∆ let ∆x to be the set N(x)\{a, b}. Now define

∆La,Lb = {
√
m | m ∈

∏
x∈∆

∆x}.

The generators of K/K0 are in degree 3. Now for any
λ ∈ ∆La,Lb define a k-linear map

φλLa,Lb : (K/K0)3 −→ R/I

by

φλLa,Lb(re,e′) =


(−1)σ({ab,ax},ax)λx e = ab, e ′ = ax and x ∈ La

(−1)σ({ab,bx},bx)λx e = ab, e ′ = bx and x ∈ Lb

0 otherwise.
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Lemma

For La and Lb as above and for any λ ∈ ∆La,Lb , φλLa,Lb
algebraically extends to a well-defined homomorphism in
HomR(K/K0,R/I ).

Let G be a graph with no 3-cycles. As ab varies in the edge set
E (G ), the homomorphisms φλLa,Lb form a generating set for

T 2(R/I (G )).
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Vanishing of the second cotangent cohomology

Theorem

Let G be a graph with no 3-cycles and let I be its edge ideal.
The second cotangent cohomology module T 2(R/I ) vanishes if
and only if for any edge ab of G and any La and Lb as above
we have∏

x∈∆

∆x × ((N(a) ∪ N(b))\({a, b} ∪ La ∪ Lb ∪∆) ⊆ I .

Corollary

If G is a graph with no induced 3 or 4 cycles then T 2(R/I (G ))
vanishes.
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Thank you for your attention.
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