Abstracts of the Workshop Talks

(In Alphabetical Order)

Lars Winther Christensen

Texas Tech University, USA

Talk 1

Differential Graded Algebra Structures on Free Resolutions

Free resolutions are fundamental in homological studies of modules, and whenever a free resolution can be endowed with additional structures of, say, algebraic or combinatorial nature, new tools can be brought to bear on their study. In this talk I will survey the possibilities and limitations to endowing free resolutions in local algebra with differential graded algebra structures. Free Resolutions.

Talk 2

Free Resolutions of Length 3

Every free resolution of length 3 over a local ring has a differential graded algebra structure. This structure on the resolution induces a graded-commutative algebra structure in homology, which can be used to classify cyclic modules of projective dimension 3 and, via Cohen's structure theorem, local rings of codepth 3. This classification project was started in the late 1980s. I will explain it and discuss the current status of affairs.

Talk 3

Generic Artinian Quotients of the Trivariate Polynomial Algebra

There is empirical evidence that artinian quotients of the polynomial ring in 3 variables over a field fall on a spectrum between Gorenstein and Golod. I will show how differential graded algebra structures on free resolutions play a key role in explaining this observed behavior.

Examples of DG Algebra Resolutions

Keri Sather-Wagstaff Clemson University, USA

We will present several examples of DG algebra resolutions from the literature, including the Koszul complex, Taylor resolution, and others that arise from these.

Introduction to Homological Theory of dg Modules

Yuji Yoshino Okayama University, Japan

In this series of lectures, I will explain the homological methods of dg modules focusing on the categorical aspects.

1. In the first lecture, starting with several definitions such as dg algebras, dg modules, cones, etc., I will give the precise definition of the homotopy category of dg modules and discuss its properties.

2. The main topic of the second lecture is a construction of semi-free resolutions for dg modules. Using this, we are able to obtain an equivalence between the derived category and the homotopy category consisting of semi-free dg modules.

3. In the last lecture, I will show how the derived equivalence is induced from a dg algebra quasiisomorphism.