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Abstract. Given an arbitrary hypergraph H, we may glue to H a family of hypergraphs
to get a new hypergraph H′ having H as an induced subhypergraph. In this paper, we
introduce three gluing techniques for which the topological and combinatorial properties
(such as Cohen-Macaulayness, shellability, vertex-decomposability etc.) of the resulting
hypergraph H′ is under control in terms of the glued components. This enables us to
construct broad classes of simplicial complexes containing a given simplicial complex as
induced subcomplex satisfying nice topological and combinatorial properties.

introduction

A simplicial complex ∆ on a vertex set V is a collection of subsets of V such that
∪∆ = V and ∆ is closed under the operation of taking subsets. The elements of ∆ are
called faces and the maximal faces of ∆, under inclusion, are called the facets of ∆. A
simplicial complex with facets F1, . . . , Fm is often denoted by ⟨F1, . . . , Fm⟩. A simplex is
a simplicial complex with only one facet.

A simplicial complex ∆ is called shellable if there is a total order on facets of ∆, say
F1, . . . , Fm, such that ⟨F1, . . . , Fi−1⟩ ∩ ⟨Fi⟩ is generated by a non-empty set of maximal
proper subsets of Fi for 2 ≤ i ≤ m. The notion of shellability is used to give (an inductive)
proof for the Euler-Poincaré formula in any dimension. If fi denotes the number of i-
faces of a d-dimensional polytope (with f−1 = fd = 1), then the Euler-Poincaré formula

states that
∑d

i=−1(−1)ifi = 1. Shellable complexes are themselves an intermediate family
among two other important families of simplicial complexes, namely vertex-decomposable
and sequentially Cohen-Macaulay simplicial complexes. Indeed, we have the following
implications

vertex-decomposable =⇒ shellable =⇒ sequentially Cohen-Macaulay,

and both of these inclusions are known to be strict.
A vertex-decomposable simplicial complex ∆ is defined recursively in terms of link and

deletion of vertices of ∆. In a more general setting, the link and the deletion of a face F
of ∆ are defined as follows:

link∆(F ) = {G ∈ ∆: G ∩ F = ∅ and G ∪ F ∈ ∆},
∆ \ F = {G ∈ ∆: G ∩ F = ∅}.

In view of the above settings, ∆ is vertex-decomposable if either it is a simplex or else
there exists a vertex v ∈ V such that

(i) any facet of ∆ \ v is a facet of ∆;
(ii) both complexes link∆(v) and ∆ \ v are vertex-decomposable.
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Sequentially Cohen-Macaulay complexes are defined slightly different. Let ∆ be a sim-
plicial complex on [n], where [n] = {1, . . . , n}. The pure i-skeleton of ∆ is the simplicial

complex ∆[i] = ⟨F ∈ ∆: |F | = i+1⟩. A simplicial complex ∆ is Cohen-Macaulay over K if
the Stanley-Reisner ring K[∆] := S/I∆ is a Cohen-Macaulay ring, where S = K[x1, . . . , xn]
is the polynomial ring with coefficients in K and I∆ =

⟨∏
i∈F xi : F /∈ ∆

⟩
. It turns

out that ∆ is Cohen-Macaulay if and only if H̃i(link∆(F ),K) = 0, for all F ∈ ∆ and
i < dim link∆(F ) (Reisner’s Theorem, see e.g. [15, Corollary 4.2]). Consequently, as stated
in [15, Proposition 4.3], Cohen-Macaulayness is a topological property in the sense that
∆ is Cohen-Macaulay if and only if the relative singular homologies Hi(∥∆∥, ∥∆∥ − p,K)
of the geometric realization ∥∆∥ of ∆ vanish for all i < dim ∥∆∥ and p ∈ ∥∆∥. Note that
Cohen-Macaulay complexes are pure in the sense that all of their facets have the same
cardinality (see [2, Corollary 5.1.5]). Accordingly, ∆ is sequentially Cohen-Macaulay if
every pure i-skeleton of ∆ is Cohen-Macaulay, which is equivalent to say that K[∆] is a
sequentially Cohen-Macaulay ring (see [7, Theorem 3.3]). Recall that a (graded) S-module
M is sequentially Cohen-Macaulay if there exists a filtration

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M (1)

of (graded) submodules of M such that each quotient Mi/Mi−1 is Cohen-Macaulay and

dimM1/M0 < dimM2/M1 < · · · < dimMr/Mr−1,

where dimN denotes the Krull dimension of S-module N .
A hypergraph H is simply a pair (V,E) of vertices V and edges E ⊆ 2V . The indepen-

dence complex ∆H of H is the simplicial complex of all independent sets in H. Clearly,
every simplicial complex is the independence complex of a hypergraph. One say that H is
(sequentially) Cohen-Macaulay/shellable/vertex-decomposable/pure if ∆H is so. In this
paper, we consider a hypergraph H′ obtained by gluing some hypergraphs to a central
“arbitrary” hypergraph H and study the topological and combinatorial properties (such
as Cohen-Macaulayness, shellability, vertex-decomposability etc.) of H′. In this regard,
Villarreal [17, Proposition 2.2] proves that the graph obtained from a graph G by adding
a pendant (also known as whisker) to each vertex is Cohen-Macaulay. Next Villarreal
[18, Proposition 5.4.10] improves his result by showing that such graphs are pure and
shellable. Later Dochtermann and Engström [6, Theorem 4.4] prove that such graphs are
indeed pure and vertex-decomposable. Replacing pendants with complete graphs in the
Villarreal’s construction, Hibi et al. [11, Theorem 1.1] show that the resulting graph is still
pure and vertex-decomposable (see also [3]). The idea of making small modifications to a
graph in order to obtain a (sequentially) Cohen-Macaulay/shellable/vertex-decomposable
graph is further explored in other papers too (see [1, 6, 9, 13, 14]). Our results unify all
these results not only in the case of graphs but also hypergraphs. In algebraic setting our
results turns into constructive and generic approaches to the following problem:

Let J ⊆ S = K[x1, . . . , xn] be a square-free monomial ideal and I ⊆ S′ =
K[x1, . . . , xn, y1, . . . , ym] be a square-free monomial ideal such that I ∩S =
J . Under which conditions on J and I, the ring S′/I is (sequentially)
Cohen-Macaulay?

This paper is organized as follows: In the first section, we quickly review some al-
gebraic and combinatorial backgrounds, which will be used in the sequel. Hybrid hy-
pergraphs are introduced in Section 2. These hypergraphs are constructed by gluing
a family of hypergraphs to a central one via a family of triples, which are assumed to
satisfy the proper independence property (see the definition of PIP-triples). The main
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theorem of this section establishes some combinatorial/topological properties of hybrid
hypergraphs and determines under which conditions a hybrid hypergraph is sequentially
Cohen-Macaulay/shellable/vertex-decomposable (Theorem 2.1). It is shown that all of the
results mentioned above are consequences of our main theorem of Section 2 (see Example
2). The idea behind the proof of Theorem 2.1 is very flexible and can be applied to other
suitably constructed families of hypergraphs. In Section 3, we present two such families
of hypergraph constructions and show that the results of Theorem 2.1 can be extended to
these families too (Theorems 3.1 and 3.3). While the gluing methods here are less general
than the hybrid case, the glued components need not to satisfy the proper independence
property.

1. Preliminaries

In this section, we recall basic notions of simplicial complexes, hypergraphs, and their
associated ideals, which we meet in this paper.

1.1. Hypergraphs, clutters, and their associated ideals. Let H be a hypergraph
with vertex set V = V (H) and edge set E = E(H). Following [4], there are two ways to
remove a vertex v from H. The strong vertex deletion H\ v is the hypergraph with vertex
set V (H) \ {v} and edge set {e ∈ E(H) : v /∈ e}. The weak vertex deletion H/v has the
same vertex set as H \ v but the edge set is {e \ {v} : e ∈ E(H)}. One observe that H \ v
deletes all edges containing v, while H/v removes v from each edge containing it. It is
straightforward to see that, if v ̸= w are vertices of H, then:

(H \ v) \ w = (H \ w) \ v, (H/v)/w = (H/w)/v, (H \ v)/w = (H/w) \ v.

Let W be a set of vertices of H and f ∈ {0, 1}W be a binary function on W . A (W, f)-
deletion of H is a hypergraph obtained from H by repeatedly strongly deleting all vertices
w of W with f(w) = 0 and weakly deleting all vertices w of W with f(w) = 1. The
number of weak vertex deletions in a (W,f)-deletion H′ of H is denoted by wdf (H′) that
is wdf (H′) =

∑
w∈W f(w).

If W is a set of vertices of H, then the subhypergraph H[W ] of H induced on W is the
subhypergraph of H with vertex set W and edge set {e ∈ E(H) : e ⊆ W}.

For a non-empty hypergraph H on vertex set [n], we define the ideal I (H) to be

I(H) = (xT : T ∈ E(H)) ,

and we set I(∅) = 0. The ideal I(H) is called the edge ideal of H. Let ∆H be the simplicial
complex on the vertex set [n] with I∆H = I (H). The simplicial complex ∆H is called the
independence complex of H. Notice that F ⊆ [n] belongs to ∆H if and only if it is an
independent set in H, that is e * F for every e ∈ E(H). The independence number α(H)
of H is the maximum size of independent sets of H or equivalently dim∆H + 1.

A clutter C with vertex set X is an antichain of 2X such that X = ∪C. The elements
of C are called circuits of C. A clutter C is d-uniform if every circuit of C has d vertices.
As a hypergraph, to every clutter C one corresponds its ideal I(C). This correspondence
is clearly bijective, the fact that is not valid for hypergraphs in general.

If C is a d-uniform clutter on [n], then we define the complement C̄ of C as

C̄ = {F ⊆ [n] : |F | = d, F /∈ C}.

In this case, the simplicial complex ∆(C) on the vertex set [n] with I∆(C) = I
(
C̄
)
is

called the clique complex of C. A face F ∈ ∆(C) is called a clique in C. It is easily seen
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that F ⊆ [n] is a clique in C if and only if either |F | < d or else all d-subsets of F belong
to C.

1.2. Criteria for (sequentially) Cohen-Macaulayness and shellability. The recur-
sive definition of vertex-decomposability states that a simplicial complex ∆ is vertex-
decomposable if ∆ admits a shedding vertex v such that link∆(v) and ∆ \ v are both
vertex-decomposable provided that ∆ is not a simplex. In the following, among other re-
sults, we show that analogous arguments work for (sequentially) Cohen-Macaulayness and
shellability as well. Indeed, in the proof of our main theorems, we do not use the formal
definitions of shellable or (sequentially) Cohen-Macaulay complexes as it is introduced in
the introduction. Instead, the following theorem plays a crucial role in our arguments.

Theorem 1.1. Let ∆ and ∆′ be simplicial complexes.

(i) If ∆ is (sequentially) Cohen-Macaulay/shellable/vertex-decomposable, then so is
link∆(F ), for every face F of ∆.

(ii) If ∆ has a shedding vertex v such that both link∆(v) and ∆ \ v are (sequentially)
Cohen-Macaulay/shellable, then so is ∆.

(iii) ∆⋆∆′ is (sequentially) Cohen-Macaulay/shellable/vertex-decomposable if and only
if both ∆ and ∆′ are so.

In the rest of paper, we introduce three hypergraph constructions by gluing a family of
hypergraphs to a given central hypergraph and examine when the resulting hypergraphs
satisfy our desired properties, namely (sequentially) Cohen-Macaulayness, shellability, and
vertex-decomposability.

2. First construction

In this section we introduce our first (and main) hypergraph gluing. Under mild assump-
tions, i.e. the PIP-condition, we may control the topological and combinatorial properties
of the resulting hypergraphs in terms of the glued components.

Definition 1. LetH be a hypergraph with vertex partition U1∪̇ · · · ∪̇Um∪̇V , andH1, . . . ,Hm

be hypergraphs such that H,H1, . . . ,Hm are pairwise disjoint. Let D1, . . . , Dm be sets of
non-negative integers. The hypergraph with vertex set V (H) ∪ V (H1) ∪ · · · ∪ V (Hm) and
edge set

E(H) ∪
m∪
i=1

{
e ∪ e′ : e ⊆ Ui, ∅ ̸= e′ ∈ E(Hi), |e ∪ e′| ∈ Di}, (2)

denoted by (H, (Ui, Di,Hi)
m
i=1), is called the hybrid hypergraph of H with respect to the

gluing triples (Ui, Di,Hi)
m
i=1. The hypergraphs H1, . . . ,Hm are the glued components of

(H, (Ui, Di,Hi)
m
i=1).

Remark. From the definition of hybrid hypergraphs, it is evident that H is an induced
subhypergraph of (H, (Ui, Di,Hi)

m
i=1). As a result, every independent set in H is an

independent set in (H, (Ui, Di,Hi)
m
i=1) as well.

The independence complex of hybrid hypergraphs and their facets look wild if there is no
constraints on the gluing triples (Ui, Di,Hi). To resolve this, we apply the PIP-condition
(see definition below) on gluing triples in order to describe the independence complex of
hybrid hypergraphs. In what follows, we consider the Minkowski difference X − Y of two
sets X,Y of integers as the set {x − y : x ∈ X, y ∈ Y }. Also, for a hypergraph H, let
HX stand for the spanning subhypergraph of H including all edges of sizes belonging to
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X, and Size(H) denote the set {|e| : e ∈ E(H)}. If a, b are integers with a ≤ b, then the
set of all integers x with a ≤ x ≤ b is denoted by the interval [a, b].

Definition 2. Let H be a hypergraph, D be a set of non-negative integers, and α be a
positive integer. The triple (α,D,H) satisfies the proper independence property (PIP) if

(a) every G in F(∆HD−[0,i+1]) is contained properly in some G′ in F(∆HD−[0,i]),
(b) every G′ in F(∆HD−[0,i]) contains properly some G in F(∆HD−[0,i+1]),

for all 0 ≤ i < α. It turns out that [α] ⊆ D − Size(H). More precisely, every i ∈ [α]
belongs to D − (Size(H) \ (D − [0, i− 1])).

If (α,D,H) is any triple, then in general we have the following series of simplicial
complexes

∆HD−[0,α] ⊆ ∆HD−[0,α−1] ⊆ · · · ⊆ ∆HD−[0,1] ⊆ ∆HD−[0,0]

showing that every facet G of ∆HD−[0,i+1] is contained in a facet G′ of ∆HD−[0,i] for all
0 ≤ i < α. Being a PIP-triple indicates that not only every facet G of ∆HD−[0,i+1] is
contained “properly” in a facet G′ of ∆HD−[0,i] for all 0 ≤ i < α but also every facet G′ of
∆HD−[0,i] contains a facet G of ∆HD−[0,i+1] properly for all 0 ≤ i < α.

Example 1.

(i) Let C be a d-uniform clutter, D = {d}, and 0 < α ≤ d. If H is the hypergraph

induced by the edge-set C ∪ (⟨V (C)⟩[d−2] \X), where X ⊆ ⟨V (C)⟩[d−α−2], then

C′D−[0,i] = C ∪ (⟨V (C)⟩[d−2] \ ⟨V (C)⟩[d−i−2])

for all 0 ≤ i ≤ α. It follows that ∆C′D−[0,i] = ⟨V (C)⟩[d−i−2], for all 1 ≤ i ≤ α.
Hence (α,D, C′) is a PIP-triple satisfying C′D = CD.

(ii) Let S be a simplicial complex of dimension d− 1, D = {d}, and 0 < α < d. Then
the triple (α,D,S) satisfies PIP(a) but not PIP(b) in general. Indeed, if S is a

simplicial complex and G is any independent set in SD−[0,i+1] with i < α, then any
G′ ⊃ G with |G′ \G| = 1 is an independent set in SD−[0,i]. On the other hand, the
triple (α, {3},S), where S is the simplicial complex ⟨124, 134, 234, 235, 136, 127⟩ ∪
⟨45, 46, 47, 56, 57, 67⟩ and α > 0 does not satisfy PIP(b). To see this, we observe
that the facet 123 of ∆SD−[0,0] does not contain any of the facets of ∆SD−[0,1] =
⟨15, 26, 37⟩.

(iii) The triple (α, {3},H), where E(H) = {1, 2, 3, 4, 12, 24, 34, 123} and 0 < α < 3
satisfies PIP while it is not a simplicial complex.

In order to state our main result of this section, we need some preparations and pre-
liminary lemmas.

Definition 3. Let H be a hypergraph. A set D of vertices of H is a strong dominating
set in H if α(H/D) = 0 or equivalently every singleton subset of V (H/D) is an edge of
H/D. Here by H/D we mean the hypergraph whose edge set is

{e \D : e ∈ E(H)}.

According to the above settings, we are in the position to state and prove our results
on the structure and combinatorial/topological properties of hybrid hypergraphs.

Theorem 2.1. Let H′ = (H, (Ui, Di,Hi)
m
i=1) be a hybrid hypergraph of H, where H is a

hypergraph with vertex partition U1∪̇ · · · ∪̇Um∪̇V . If (α(H[Ui]), Di,Hi)
m
i=1 is a family of

PIP-triples, then
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(i) dim∆H′ =
∑m

i=1 dim∆HDi
i

+ dim∆H[V ] +m,

(ii) ∆H′ is pure if and only if ∆H[V ] is pure, and ∆HDi−[0,s]
i

is pure and

dim∆HDi−[0,s]
i

− dim∆HDi−[0,t]
i

= t− s,

for all 1 ≤ i ≤ m and 0 ≤ s ≤ t ≤ α(H[Ui]),
(iii) Let Wi be a strong dominating independent set in H[Ui], for every 1 ≤ i ≤ m. Then

H′ is sequentially Cohen-Macaulay/shellable/vertex-decomposable if and only if

H[V ], HDi−[0,α(Ui)+wdfi (Ui)]

i

are so for all 1 ≤ i ≤ m and (Wi, fi)-deletions Ui of H[Ui].

Corollary 2.2. Let H be a hypergraph with vertex partition U1∪̇ · · · ∪̇Um and di = α(H[Ui]),
for i = 1, . . . ,m. Let Ci be a di-uniform clutter and Hi be the hypergraph induced

by the edge-set Ci ∪ ⟨V (Ci)⟩[di−2] for i = 1, . . . ,m. Let H′ be the hybrid hypergraph
(H, (Ui, {di},Hi)

m
i=1). Then

(i) dim∆H′ =
∑m

i=1 dim∆Ci +m− 1,

(ii) ∆H′ is pure if and only if Ci =
(V (Ci)

di

)
is complete di-clutter, for all i = 1, . . . ,m,

(iii) H′ is vertex-decomposable if and only if Ci is vertex-decomposable for all 1 ≤ i ≤ m
such that H[Ui] has a unique maximal independent set,

Corollary 2.3. Let C be a d-uniform clutter, U1, . . . , Um be a clique partition of C \
V for some subset V of V (C), and let H1, . . . ,Hm be hypergraphs such that the triples
(α(C[Ui]), {d},Hi) satisfy the PIP-conditions, for i = 1, . . . ,m. Let C′ be the d-uniform
clutter defined as

C′ = C ∪
m∪
i=1

{e ⊆ Ui ∪ V (Hi) : |e| = d and e ∩ V (Hi) ∈ E(Hi)}.

Then

(i) dim∆C′ =
∑m

i=1 dim∆H{d}
i

+ dim∆C[V ] +m,

(ii) ∆C′ is pure if and only if ∆C[V ] is pure, and ∆H[s,d]
i

is pure and

dim∆H[t,d]
i

− dim∆H[s,d]
i

= t− s,

for all i = 1, . . . ,m and max{d− |Ui|, 1} ≤ s ≤ t ≤ d,
(iii) C′ is sequentially Cohen-Macaulay/shellable/vertex-decomposable if and only if C[V ]

and H[d−j,d]
i are so for all j ∈ J , where J = {β, . . . , α(C[Ui])} with

β =

{
0, |Ui| < d,

min{|Ui| − (d− 1), d− 1}, |Ui| ≥ d.

Corollary 2.4. Let C be a d-uniform clutter, U1, . . . , Um be a clique partition of C, and
let H1, . . . ,Hm be disjoint simplexes of dimensions at least d− 2. If

C′ = C ∪
m∪
i=1

(
Ui ∪ V (Hi)

d

)
,

then

(i) ∆C′ is pure vertex-decomposable of dimension (d− 1)m− 1, and
(ii) the ring K[V (C′)]/I(C′) is Cohen-Macaulay of dimension (d− 1)m.
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Theorem 2.1 and its related corollaries establish alternate proofs for previously known
results we address here.

Example 2.

(i) Let G be a graph with vertex set V (G) = {v1, . . . , vn}. The corona graph G′ of G
is a graph obtained from G by attaching a pendant to each vertex of G, that is G′

is the graph with vertex set V (G)∪ {w1, . . . , wn} and edge set E(G)∪ {viwi : 1 ≤
i ≤ n}. It is shown by Villarreal [17, Proposition 2.2] that the graph G′ is Cohen-
Macaulay. Villarreal [18, Proposition 5.4.10] improves his result by showing that
G′ is pure and shellable. Later Dochtermann and Engström [6, Theorem 4.4]
prove that G′ is indeed pure and vertex-decomposable. Hibi, Higashitani, Kimura,
and O’Keefe [11] and Cook II and Nagel [3] give two generalizations of Villarreal’s
construction. In [11, Theorem 1.1], Hibi et. al. show that the graph obtained from
identification of every vertex v of G with a vertex of a complete graph Gv is still
pure and vertex-decomposable. Cook II and Nagel [3, Theorem 3.3 and Corollary
3.5] apply a different generalization and show that ∆Gπ is vertex-decomposable
and Cohen-Macaulay if G is a graph and Gπ is the graph obtained from G with
a clique partition π = {W1, . . . ,Wt} as follows: V (Gπ) = V (G) ∪ {w1, . . . , wt} for
some distinct vertices w1, . . . , wt not in G, and E(Gπ) = E(G) ∪ {vwi : v ∈ Wi}.
All of these results and consequences thereafter are special cases of Corollary 2.4.

(ii) In [6, Proposition 4.3] the authors show that if Gr is the graph obtained from an r-
cycle with attaching a new vertex to two adjacent vertices of the cycle, then I(Gr) is
vertex-decomposable and hence sequentially Cohen-Macaulay. This follows simply
from Corollary 2.3.

(iii) Let G be a chordal graph that is G has no induced cycles of length greater than 3.
In [10, Theorem 3.2], the authors show that ∆G is sequentially Cohen-Macaulay.
Later, in [16, Theorem 2.13] it is shown that ∆G is indeed shellable. This result
is also strengthened by Woodroofe [20, Corollary 7(2)] (and independently by
Dochtermann and Engström [6, Theorem 4.1]) by showing that ∆G is vertex-
decomposable. We use our method to obtain the mentioned results. First observe
that the chordal graph G has a vertex v with complete neighborhood U (see [5]). If
V := V (G)\(U∪{v}), then (G\v, (U, {2}, ⟨v⟩)) = G. Hence, an inductive argument
in conjunction with Corollary 2.3 shows that ∆G is vertex-decomposable.

(iv) Let ∆ be a simplicial complex on the vertex set V = {v1, . . . , vn}. Following [1],
an m-coloring χ of ∆ is a partition V = V1 ∪ · · · ∪ Vm of the vertices (where
the sets Vi are allowed to be empty) such that |F ∩ Vi| ≤ 1 for all F ∈ ∆ and
1 ≤ i ≤ m. For such a coloring χ of ∆, define the simplicial complex ∆χ on the
vertex set {v1, . . . , vn, w1, . . . , wm} with faces σ ∪ τ where σ ∈ ∆ and τ is any
subset of {wi : σ ∩ Vi = ∅}. In [1, Theorem 7], it is shown that ∆χ is pure and
vertex-decomposable. In the following we show that this result is an immediate
consequence of Theorem 2.1. Let C and C′ be the clutters with ∆ = ∆C and
∆χ = ∆C′ . It is easy to see that C′ = (C, (Vi, {2}, ⟨wi⟩)mi=1). Suppose without
loss of generality that V1, . . . , Vm are non-empty. It follows from the definition
of m-coloring that α(C[Vi]) = 1, hence (α(C[Vi]), {2}, ⟨wi⟩) is a PIP-triple for all
1 ≤ i ≤ m. Now from Theorem 2.1 we conclude that ∆χ = ∆C′ is pure and
vertex-decomposable.
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3. Second and third constructions

The aim of this section is to give yet two more gluing techniques leading us to similar
results as in Theorem 2.1. Though our constructions here coincide with the first one in
very special cases, they are independent from the first construction in general. In what
follows, our gluing processes are applied to clutters instead of hypergraphs and that every
component is glued via a single vertex to the central clutter. The main idea of our proofs
obey from that in Theorem 2.1. The following definition is used in order to describe the
purity of the resulting clutters.

Definition 4. Let C be a clutter and U be an induced subclutter of C. Then U is
independently embedded in C if F ∪ X ∈ F(∆C) with F ⊆ V (U) and X ⊆ V (C) \ V (U)
implies F ∈ F(∆U ).

Remark. Let C be a clutter and v ∈ V (C). Viewing C as a hypergraph, the weakly deletion
C/v is a hypergraph but not a clutter in general. However, the set min(C/v) of all minimal
elements of C/v under inclusion is a clutter whose edge ideal is the same as that of C/v.
This is usually referred to hypergraph reduction of C/v.

Theorem 3.1. Let C be a clutter with vertex set U ∪̇V and {Cu}u∈U be a family of non-
empty clutters such that C and {Cu}u∈U are pairwise disjoint. Let (C, {Cu}u∈U ) be the
clutter obtained from C as follows:

(C, {Cu}u∈U ) = C ∪
∪
u∈U

{e ∪ {u} : e ∈ Cu}.

If C′ := (C, {Cu}u∈U ) and ∆′ := ∆C′, then

(i) dim∆′ =
∑

u∈U |V (Cu)|+ dim∆C[V ],
(ii) ∆′ is pure if and only if |Cu| = 1 for all u ∈ U , ∆C[V ] is pure, and C[V ] is

independently embedded in C,
(iii) C′ is sequentially Cohen-Macaulay/shellable/vertex-decomposable if and only if C[V ]

and Cu are so for all u ∈ U ,
(iv) C′ is Cohen-Macaulay if and only if it is pure and C[V ] is Cohen-Macaulay.

Corollary 3.2 (Compare with [8, Theorem 8.2]). Let C be a clutter on [n] and C1, . . . , Cn

be non-empty sets such that V (C), C1, . . . , Cn are pairwise disjoint. Let

C′ := C ∪ {Ci ∪ {i} : i ∈ [n]}.

Then ∆C′ is a pure and vertex-decomposable simplicial complex, hence Cohen-Macaulay.

One observe that the above corollary covers the results of Villarreal and Dochtermann-
Engström in Example 2(i).

Theorem 3.3. Let C be a clutter with vertex set U ∪̇V and {Cu}u∈U be a family of non-
empty clutters such that C and {Cu}u∈U are pairwise disjoint. Let (C, {Cu}u∈U )∗ be the
clutter obtained from C as follows:

(C, {Cu}u∈U )∗ = C ∪
∪
u∈U

Cu ∪
∪
u∈U

{{u}} ⋆ C∗
u,

where C∗
u is the set of minimal elements of the set {e \ x : x ∈ e, e ∈ Cu} with respect to

inclusion, for all u ∈ U . If C′ := (C, {Cu}u∈U )∗ and ∆′ := ∆C′, then

(i) dim∆′ = |U |+
∑

u∈U |∆Cu |+ dim∆C[V ],



GUEING HYPERGRAPHS 9

(ii) ∆′ is pure if and only if ∆C[V ] is pure, C[V ] is independently embedded in C, ∆Cu
and ∆C∗

u
are pure and dim∆C∗

u
= dim∆Cu − 1 for all u ∈ U ,

(iii) C′ is sequentially Cohen-Macaulay/shellable/vertex-decomposable if and only if C[V ],
and Cu and C∗

u are so for all u ∈ U .

Notice that the independence complex of a complete graph is vertex-decomposable.
Now, in view of Theorem 3.3, we conclude that the graph G′ obtained form a graph G by
attaching a complete graph to each vertex of G is vertex-decomposable. This covers the
results of Hibi et. al. in Example 2(i).
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[9] C. A. Francisco and H. T. Hà, Whiskers and sequentially Cohen-Macaulay graphs, J. Combin. Theory

Ser. A 115(2) (2008), 304–316. 2
[10] C. A. Francisco and A. Van Tuyl, Sequentially Cohen-Macaulay edge ideals, Proc. Amer. Math. Soc.

135(8) (2007), 2327–2337. 7
[11] T. Hibi, A. Higashitani, K. Kimura, and A. B. O’Keefe, Algebraic study on Cameron-Walker graphs,

J. Algebra 422 (2015), 257–269. 2, 7
[12] R. Jafari and A. A. Yazdan Pour, Shedding vertices and ass-decomposable monomial ideals, Preprint.
[13] A. Mousivand, S. A. Seyed Fakhari, and S. Yassemi, A new construction for Cohen-Macaulay graphs,

Comm. Algebra 43(2) (2015), 5104–5112. 2
[14] M. R. Pournaki, S. A. Seyed Fakhari, and S. Yassemi, New classes of set-theoretic complete intersection

monomial ideals, Comm. Algebra 43(9) (2015), 3920–3924. 2
[15] R. Stanley, Combinatorics and Commutative Algebra, 2nd ed., Progr. Math. 41, Birkhäuser Boston,
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