Frontiers in Mathematical Sciences


TITLE  
Proof of Komlós Conjecture on Hamiltonian Subsets


SPEAKER  
Maryam Sharifzadeh
University of Warwick





ABSTRACT

Komlós conjectured in 1981 that among all graphs with minimum degree at least $d$, the complete graph $K_{d+1}$ minimises the number of Hamiltonian subsets, where a subset of vertices is Hamiltonian if it contains a spanning cycle. We prove this conjecture when $d$ is sufficiently large. In fact we prove a stronger result: for large $d$, any graph $G$ with average degree at least $d$ contains almost twice as many Hamiltonian subsets as $K_{d+1}$, unless $G$ is isomorphic to $K_{d+1}$ or a certain other graph which we specify. This is joint work with Jaehoon Kim, Hong Liu and Katherine Staden.