F. Blanchard and G.
Hansel, Systèmes codés,
Theoretical Computer Science. 44
14-49, 1986.
M. Boyle, Topological Orbit
Equivalence and Factor Maps in Symbolic
Dynamics, Ph.D. Thesis, University
of Washington, Seattle (1983).
M. Boyle, D. Lind, D. Rudolph. The
automorphism group of a shift of finite
type. Trans. Amer. Math. Soc. 306,
no. 1, (1988) 71-114.
M. Boyle and S. Tuncel, Infinite-to-one
codes and Markov measures, Trans.
Amer. Math. Soc. 285 (1984),
657-684.
V. Cyr, B. Kra, The automorphism group
of a minimal shift of stretched
exponential growth. J. Mod. Dyn. 10
(2016) 483-495.
F. Durand, B. Host, C. Skau, Substitutional
dynamical systems, Bratteli diagrams and
Dimension groups, Ergodic Th. &
Dyn. Dyd. 19 (1999), 953-993.
D. Fiebig and U. Fiebig, Covers for
coded systems, Contemporary
Mathematics, 135, 1992, 139-179.
R. H. Herman, I. F. Putnuam and C. F.
Skau, Ordered bratteli diagrams,
Dimension groups and topological
dynamics, Int. J. Math., 3
(1992), 827-864.
U. Jung, On the existence of open and
bi-continuing codes, Trans. Amer.
Math. Soc. 363 (2011), 1399-1417.
U. Jung, Open maps between shift
spaces, Erg. Th. & Dynam. Sys. 29
(2009), 1257-1272.
P. Kurka, Topological and symbolic
dynamics, Societe Mathematique de
France, 2003.
D. Lind and B. Marcus, An introduction
to symbolic dynamics and coding,
Cambridge Univ. Press, 1995.
P. Walters, An introduction to ergodic
theory, Springer-Verlag, 1982.