References:
|
[1] |
D. Coronel, A. Navas, M. Ponce, On
bounded cocycles of isometries over minimal
dynamics. J. Mod. Dyn. 7 (2013), no. 1,
45–74. |
|
[2] |
A. Navas, Sur les
rapprochements par conjugaison en dimension 1 et
classe $C^1$. (French) [On connections by
conjugation in dimension 1 and class $C^1$]
Compos. Math. 150 (2014), no. 7,
1183–1195. |
|
[3] |
A. Navas, M. Triestino, On the
invariant distributions of $C^2$ circle
diffeomorphisms of irrational rotation number.
Math. Z. 274 (2013), no. 1-2, 315–321. |
|
[4] |
A. Kocsard, On cohomological
$C^0$-(in)stability. Bull. Braz. Math. Soc.
(N.S.) 44 (2013), no. 3, 489–495.
|
|
[5]
|
H. Kodama, Sh. Matsumoto, Minimal
$C^1$-diffeomorphisms of the circle which admit
measurable fundamental domains. Proc. Amer. Math.
Soc. 141 (2013), no. 6, 2061–2067.
|
|
[6]
|
Douady, R., Yoccoz, J.-C.: Nombre
de rotation des difféomorphismes du cercle et
mesures automorphes. Regul. Chaotic Dyn. 4,
(1999), 2–24. |
|
|