
A Combinatorial Meeting Point Capturing an Abstract Elementary Class Comparing Two Infinitary Logics

Partitions of well-founded trees:
Three connections with model theory

Andrés Villaveces - Universidad Nacional de Colombia - Bogotá

IPM - Tehran - February 2021



A Combinatorial Meeting Point Capturing an Abstract Elementary Class Comparing Two Infinitary Logics

Contents

A Combinatorial Meeting Point

Capturing an Abstract Elementary Class

Comparing Two Infinitary Logics



A Combinatorial Meeting Point Capturing an Abstract Elementary Class Comparing Two Infinitary Logics

A Combinatorial Meeting Point

Café Léa, Rue Pascal /
Rue Claude-Bernard

In November 2018, there was an interesting
combinatorial coincidence:

I I was beginning to use a partition
theorem on well-ordered trees (due to
Komjáth and Shelah) in joint work
with Shelah to axiomatize abstract
elementary classes, and

I Jouko Väänänen, who was working
with Boban Veličković in a variant of
Shelah’s logic L1

κ and simultaneously
with me on a weakening of the same
logic L1

κ, realized during a last day
meeting in the café that it was exactly
that same partition theorem that was
the “missing piece” for an argument
they were building with Boban. . .
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Ordinals and order types form Ramsey classes. . .

Before stating Komjáth-Shelah, let us just remember that cardinals
and order types form Ramsey classes (using here an informal
notion of “Ramsey Class”):

I µ+ → (µ+)1
µ

I Given an order type ϕ and a cardinal µ, there is
some order type ψ such that

ψ → (ϕ)1
µ.
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. . .However, scattered order types do not!

Of course, one might ask whether many other important classes (of
orders, e.g.) are “Ramsey”.

For instance, scattered order types do not form a Ramsey class!
[An order type ϕ is scattered iff η 6≤ ϕ, where η = o.t.[(Q, <)]; this
means there is no order-preserving embedding from the rationals
into a partially ordered set of order type ϕ.]
There exists some scattered order type (s.o.t.) φ such that for every
s.o.t. ψ, we have

ψ 6→ (φ)1
ω.
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A positive result: Komjáth-Shelah

Although s.o.t.’s do not outright form a Ramsey class, Komjáth and
Shelah proved in 2003 a beautiful theorem giving a weaker form1:

Theorem
For every s.o.t. φ and every cardinal µ there exists a s.o.t. ψ such that

ψ → [φ]1µ,ω

Here, ψ → [φ]1µ,ω means that, given an ordered set of (scattered)
order type ψ, given a coloring F : S→ µ, there exists a countable
subset X ⊆ µ such that f–1(X) contains a subset of o.t. φ.
(Homogeneity of the coloring is spread on ω-many colors forming a
subset of the wanted order type.)

1P. Komjáth, S. Shelah: A Partition Theorem for Scattered Order Types,
Combinatorics, Probability and Computing, 12(2003), 621–626.
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Scattered orders - Hausdorff Characterization

Hausdorff characterized scattered order types as the smallest class
containing 0, 1 and closed under well-ordered sums and reverse
well-ordered sums.

This is very useful. As an example, it allows us to check that for
every scattered (S, <) with o.t. φ there is f : S→ ω such that
f–1(n) has no subset of o.t. (ω∗ + ω)n. So,

φ 6→ (1 + (ω∗ + ω) + (ω∗ + ω)2 + · · · )1
ω.

(Illustrate proof on “blackboard”.)
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The crucial (and most useful) lemma: partitioning

well-founded trees

On the way to their proof, Komjáth and Shelah prove an even more
interesting (!) lemma, a partition relation on well-founded trees:
For any α let FS(α) be the tree of all descending sequences of
elements of α. We use len(s) to denote the length of s ∈ FS(α).

Lemma (Komjáth-Shelah 2003)
Assume that α is an ordinal and µ a cardinal. Set λ = (|α|µ

ℵ0 )+.
Suppose T = FS(λ+) and F : T→ µ. Then there is a subtree
T∗ = {(δs

0, . . . , δs
n) : s = (s0, . . . , sn) ∈ FS(α)} of T and a function

c : ω → µ such that for all s ∈ T∗ we have F(s) = c(len(n)).
Crucial point: given α an ordinal, µ a cardinal, if we color a large
enough well founded tree (of descending sequences of ordinals) into
µ many colors, we may extract a subtree “of size |α|” where colors
only depend on the length of the sequence.
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Representing scattered order-types

Let α be an ordinal, let
H(α) denote the set of functions f : α→ {–1, 0, 1} such that

|D(f)| < ℵ0,

where D(f) = {β < α | f(β) 6= 0}.
Let f ≺ g iff f(β) < g(β) where β is the maximum ordinal where f
and g differ.

Lemma

I H(α) is scattered, for every α.
I If φ is a s.o.t., then φ can be embedded into some (H(α),≺).

Use Hausdorff: enough to show that if φ1,φ2 can be embedded into
some H(α), then ANY well-ordered sum or reverse well-ordered
sum of φ1,φ2 can be. Enough to show that H(α)× β → H(α + β)
and H(α)× β∗ → H(α + β).
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From well-founded trees to scattered order types

To get that for every s.o.t. φ, for every cardinal µ there is a s.o.t. ψ
such that ψ → [φ]1µ,ω. . .
First, now enough to prove that given α,µ there is some λ such that

H(λ+)→ [H(α)]1µ,ω.

Pick λ as in the lemma: λ =
(

|α|µ
ℵ0
)+

and let G : H(λ+)→ µ be a
coloring. From this, build a coloring F of FS(λ+) . . . and use the
lemma to get an α-subtree x(s | s ∈ FS(α)) such that

F (x(s(0)), x(s(0), s(1)), . . . , x(s(0), . . . , s(n))) = c(n).

Conclude by building from this an embedding from H(α)→ H(λ+)
. . .
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Plan

A Combinatorial Meeting Point

Capturing an Abstract Elementary Class

Comparing Two Infinitary Logics
Shelah’s logic L1

κ

Approximations from above: chain logic, . . .



A Combinatorial Meeting Point Capturing an Abstract Elementary Class Comparing Two Infinitary Logics

AEC - the axioms, briefly

Fix K be a class of τ -structures, ≺K a binary relation on K.

Definition
(K,≺K) is an abstract elementary class iff
I K, ≺K are closed under isomorphism,
I M, N ∈ K, M ≺K N⇒ M ⊂ N,
I ≺K is a partial order,
I (TV) M ⊂ N ≺K N̄, M ≺K N̄⇒ M ≺K N,
I (↘LS) There is some κ = LS(K) ≥ ℵ0 such that for every M ∈ K, for every

A ⊂ |M|, there is N ≺K M with A ⊂ |N| and ‖N‖ ≤ |A| + LS(K),
I (Unions of ≺K-chains) A union of an arbitrary ≺K-chain in K belongs to
K, is a ≺K-extension of all models in the chain and is the sup of the chain.
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Examples

Natural constructions in Mathematics are examples of AEC (or metric AEC)

1. Complete first order theories

2. Various classes axiomatizable in Lω1,ω or Lκω .

3. Covers of Abelian algebraic groups, classes of modules (Mazari-Armida).

4. Metric (continuous) AECs - stability theory started by Hirvonen and
Hyttinen, Usvyatsov, and continued by Zambrano and V.; Eagle, Tall,
Iovino, Caicedo, Hamel have recent work related to these.

5. Gelfand triples (Zambrano, V.)

6. AECs of C∗-algebras (Argoty, Berenstein, V.)

7. Zilber analytic classes (pseudoexponentiation)

8. “Hart-Shelah”-like examples (Baldwin, Kolesnikov, Shelah, V. 2021)

9. New: dependent (NIP) AECs (with Shelah)
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Presentation Theorems and Definibility in AEC’s

The Presentation Theorem (Shelah, 1983) controls semi-definability
in AEC:
every AEC (K,≺K) is a semi-definable class (a PC class). This
brought deep consequences to the Stability Theory of AECs
(EM-models, etc.)

However, in recent work with Shelah, we improve in a substantial
way the classical result:
With our new theorem (to appear in 2021) we control definability
in AEC’s:
every AEC (K,≺K) with LST number κ is a definable class, in an
appropriate fragment of L(i2(κ))+,κ+ in its own original vocabulary.
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The canonical tree of an abstract elementary class

(Shelah-V.)

I Using Komjáth-Shelah, we
manage to pin down the
axiomatization of a class K
in infinitary logic - and to
capture the notion of
K-embedding (generalized
“strong” embedding).

I We build a canonical “small”
object for each class: its
fundamental tree.

I With this, we control
(“quantificational”)
complexity of the class.
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Detalles de lo anterior. . .
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The canonical tree of an a.e.c.

This is joint work with Saharon Shelah.
Fix an a.e.c. K with vocabulary τ and LS(K) = κ.
Let λ = i2(κ + |τ |)+.
The canonical tree of K:
I Sn := {M ∈ K | for some ᾱ = ᾱM of length n, M has universe{

a∗α | α ∈ Sᾱ[M]
}
and m < n⇒ M � Sᾱ�m[M] ≺K M

}
(and

S0 =
{

Mempt
}
),

I S = SK :=
⋃

n Sn; this is a tree with ω levels under ≺K
(equivalenty under ⊆).
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S(K)
κ · ω

S3

S1

S2

S = S(K)κ · 4

κ · 3

κ · 2

κ
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Formulas ϕM,γ,n(x̄n)
For M in the canonical tree S at level n, a formula with κ · n free
variables, defined by induction on γ.
I γ = 0: ϕ0,0 = > (“truth”). If n > 0,

ϕM,0,n :=
∧

Diagn
κ(M),

the atomic diagram of M in κ · n variables.
I γ limit: Then

ϕM,γ,n(x̄n) :=
∧
β<γ

ϕM,β,n(x̄n).

I γ = β + 1: Then ϕM,γ,n(x̄n) is the Lλ+,κ+(τ ) formula

∀z̄[κ]
∨

N�KM
N∈Sn+1

∃x̄=n

ϕN,β,n+1(x̄n+1) ∧
∧

α<αn[N]

∨
δ∈S[N]

zα = xδ


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Testing the class against the tree - Does M ∈ K?

M

S = S(K)
κ

κ · 2

κ · 3

κ · 4

κ · ω
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So we have sentences ϕγ,0, for γ < λ+, such that i < j < λ+ implies
ϕj → ϕi. These sentences are better and better approximations of
the aec K; they describe how small models of the class embed into
arbitrary ones.
Let us take a closer look at low levels:
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The catch (beginnings)

When does M |= ϕ1,0?

When in M,
∀z̄[κ]

∨
N∈M1

∃x̄=0

[
ϕN,0,1(x̄1) ∧

∧
α<α0[N]

∨
δ∈S[N] zα = xδ

]

That is, for every subset Z of M of size ≤ κ some model N in the
tree (level 1, of size κ) embeds into M, covering Z.

When does M |= ϕ2,0?
When in M,
∀z̄[κ]

∨
N∈M1

∃x̄=0

[
ϕN,1,1(x̄1) ∧

∧
α<α0[N]

∨
δ∈S[N] zα = xδ

]
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This is slightly more complicated to unravel:

∀z̄[κ]
∨

N∈M1
∃x̄=1

[
ϕN,1,1(x̄1) ∧

∧
α<α0[N]

∨
δ∈S[N] zα = xδ

]
For every subset Z of M of size ≤ κ some model N in the tree (at
level 1) M is such that M |= ϕN,1,1, through some “image of N”
covering Z. . .
for all Z′ ⊂ M of size κ there is some N′ �K N in the canonical tree,
at level 2, extending N, such that some tuple x̄=2 from M covers Z′

and is the “image” of N′ by an embedding
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A syntactic/semantic test - Does M ∈ K?

M

S = S(K)
κ

κ · 2

κ · 3

κ · 4

κ · ω
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Theorem
M ∈ K implies M |= ϕγ,0 for each γ < λ+
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Theorem
M |= ϕi2(κ)++2,0 implies M ∈ K
This much harder implication requires understanding the tree of
possible embeddings of small models; the partition property due to
Komjáth and Shelah is the key. . .
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The combinatorics behind: our by now old friend. . .

Theorem (Komjáth-Shelah (2003))
Let α be an ordinal and µ a cardinal. Set λ =

(
|α|µ

ℵ0
)+

and let
F(ds(λ+))→ µ be a colouring of the tree of finite descending sequences
of ordinals < λ. Then there are an embedding ϕ : ds(α)→ ds(λ) and
a function c : ω → µ such that for every η ∈ ds(α) of length n + 1

F(ϕ(η)) = c(n).

We apply it with number of colours µ equal to κ|τ |+κ = 2κ;
therefore (2κ)ℵ0 = 2κ. We thus obtain a sequence (ηn)n<ω,
ηn ∈ ds(λ) such that:

k ≤ m ≤ n, ` ∈ {1, 2}⇒ N`
ηm�k = N`

ηn�k.
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The tree property enables us to “reconstruct” M (satisfying ϕλ+2,0 as
a limit of models of size κ, in the class K).
With this we can
I define “quantificational depth” of an aec (variants of

Baldwin-Shelah (building on Mekler and Eklöf) give examples
of high quantificational depth). . .

I get definability of the “strong submodel relation” ≺K . . . and
genuine variants of a Tarski-Vaught test

I a grip on biinterpretability of AECs. . .
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A (Väänänen) map of various infinitary logics
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New Logics
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Close Up. . .
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Interpolation

I Craig(Lκ+ω, L(2κ)+κ+) (Malitz 1971).

If ϕ ` ψ, where ϕ is a τ1-sentence and ψ is a τ2-sentence and
both are in Lκ+ω then
there exists χ ∈ L(2κ)+κ+(τ1 ∩ τ2) such that

ϕ ` χ ` ψ.

I The original argument used “consistency properties”. Other
proofs have stressed the “Topological Separation” aspect of
Interpolation.
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So what about “balancing” Interpolation?

I Problem: Find L∗ such that

Lκ+ω ≤ L∗ ≤ L(2κ)+κ+

and Craig(L∗).

I Shelah, 2012: For singular strong limit κ of cofinality ω there is
a logic L1

κ such that⋃
λ<κ

Lλ+ω ≤ L1
κ ≤

⋃
λ<κ

Lλ+λ+

and Craig(L1
κ).

I Moreover, in the case κ = iκ, the logic L1
κ also has a

Lindström-type characterization as the maximal logic with a
peculiar strong form of undefinability of well-order.
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A description of Shelah’s logic L1
κ

I Shelah’s L1
κ is not really defined as usual; rather, it is defined by

declaring what its elementary equivalence relation is.

I This elementary equivalence relation is given by an EF-game
type equivalence.

I Then. . .what is the syntax of Shelah’s logic?
I We describe two partial answers, one approaching from below

(Väänänen-V.), the other one from above (Džamonja,
Väänänen).
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Shelah’s game Gβ
θ (M, N).

ANTI ISO
β0 < β, ~a0

f0 : ~a0 → ω, g0 : M→ N a p.i.

β1 < β0,
~b1

f1 : ~a1 → ω, g1 : M→ N a p.i., g1 ⊇ g0
...

...

Constraints:
I len( ~an) ≤ θ
I f–1

2n(m) ⊆ dom(g2n) for m ≤ n.
I f–1

2n+1(m) ⊆ ran(g2n) for m ≤ n.
ISO wins if she can play all her moves, otherwise ANTI wins.
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I M ∼βθ N iff ISO has a winning strategy in the game.
I M ≡βθ N is defined as the transitive closure of M ∼βθ N.
I A union of ≤ iβ+1(θ) equivalence classes of ≡βθ for some θ < κ

and β < θ+ is called a sentence of L1
κ.
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Shelah’s game Gβ
θ (M, N).

a2 a1

a0

g1

g0

β2

β1

β0

β NM
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Musings on approximation from above

?
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I: Chain logic L1,ch
κ : Carol Karp

(This is recent work of Džamonja and Väänänen)
I Syntax: Lκκ, κ singular strong limit of cof ω.
I Semantics in chain models (M0 ⊆ M1 ⊆ . . .)
I ∃~xφ means ∃~x((

∨
n
∧

j xj ∈ Mn) ∧ φ)

I Craig(L1,ch
κ ) (E. Cunningham, 1975)

I Lκω < L1,ch
κ < Lκκ

I L1
κ ≤ L1,c

κ < Lκκ
I “Chu-transform” (Chu-spaces) is used as a device to compare

logics.
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II: From above, a new game (other splittings)

I L1
κ is robust, but the lack of proper syntax if problematic.

I Väänänen and Veličković define a deliberately stronger but
simpler logic and then show that it is the same as L1

κ, under
conditions on κ.
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The modified game G1,β
θ,α(M, N).

β0 < β, ~a0

f0 : ~a0 → α, g0 : M→ N a p.i.

β1 < β0,
~b1

f1 : ~a0 ∪ ~b1 → α, g1 : M→ N a p.i., g1 ⊇ g0
...

...

Constraints:
I len( ~an) ≤ θ, len( ~bn) ≤ θ.
I fi+1(x) < fi(x) if fi(x) 6= 0.
I f–1

2n(0) ⊆ dom(g2n) for m ≤ n.
I f–1

2n+1(0) ⊆ ran(g2n) for m ≤ n.
Player II wins if she can play all her moves, otherwise Player I wins.
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From above, the Väänänen-Veličković variant of the

game

I G1,β
θ,α(M, N) is the EF-game of a logic L1

θ,α up to the
quantifier-rank β.

I If ω ≤ α ≤ α′ and θ ≤ η, then L1
θ ≤ L1

θ,α ≤ L1
θ,α′ ≤ Lη+η+ .

I If α is indecomposable, then “Player II has a winning strategy
in G1,β

θ,α(M, N)” is transitive and L1
κ,α has a syntax (less clear

than that of our L1,c
κ ).
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From above, the Väänänen-Veličković variant of the

game

Theorem
If κ = iκ and α is indecomposable, then L1

κ = L1
κ,α.
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Comparison of the two games:

Trivially: If β ′ ≤ β, θ′ ≤ θ and α ≤ α′, then

II ↑ G1,β
θ,α(A, B)⇒ II ↑ G1,β′

θ′,α′(A, B).

Theorem
For every β there is β∗ such that

II ↑ G1,β∗

2θ ,α(A, B)⇒ II ↑ G1,β
θ,ω(A, B).

Here if κ = iκ and β < κ, then β∗ < κ. The proof uses. . . the same
Komjáth-Shelah lemma we now have seen!
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Thank you! ¡Gracias! Fié nzhinga!



A third kind of application

A new paper, dealing with
the old issue of the limits
of categoricity transfer.

I We generalize the Hart-Shelah example (an
Lω1,ω -sentence ψk categorical in
ℵ0,ℵ1, . . . ,ℵk–1, failing categoricity above
2ℵk ) to arbitrary L(2λ)+,ω .

I So, we build ψλk an L(2λ)+,ω -sentence,
categorical in λ,λ+, . . . ,λ+k–1, failing
categoricity above 2λ.

I We achieve this by a “tradeoff” between
(finite) combinatorial complexity and
categoricity going up one cardinal.

I The key to block categoricity is to find a
regular cardinal µ such that µ→ (ω)k

2λ and
µ 6→ (ω)k+1

2λ . (Erdös-Rado plus a negative
partition relation from the book by
Erdös-Hajnal-Maté-Rado). . .
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