Dynamic Topological Logic Day 1

David Fernández-Duque

Ghent University

Online course for the Institute for Research in Fundamental Sciences Tehran, Iran

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Dynamical systems are abstract models of change over time and occur in many branches of mathematics and natural science.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Dynamical systems are abstract models of change over time and occur in many branches of mathematics and natural science.

Formally, a dynamical (topological) system is a pair (X, S) where X is a topological space and $S: X \to X$ is continuous.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Dynamical systems are abstract models of change over time and occur in many branches of mathematics and natural science.

Formally, a dynamical (topological) system is a pair (X, S) where X is a topological space and $S: X \to X$ is continuous.

We think of X as representing space and S as representing the passage of time.

Dynamical systems are abstract models of change over time and occur in many branches of mathematics and natural science.

Formally, a dynamical (topological) system is a pair (X, S) where X is a topological space and $S: X \to X$ is continuous.

We think of X as representing space and S as representing the passage of time.

A point $x \in X$ 'moves' along its orbit

$$x, S(x), S^2(x), \ldots, S^n(x), \ldots$$

(ロ) (同) (三) (三) (三) (三) (○) (○)

Recall:

A topological space is a pair (X, \mathcal{T}) where $\mathcal{T} \subseteq 2^X$ satisfies

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Recall:

A topological space is a pair (X, \mathcal{T}) where $\mathcal{T} \subseteq 2^X$ satisfies

1. $\emptyset, X \in \mathcal{T}$

Recall:

A topological space is a pair (X, \mathcal{T}) where $\mathcal{T} \subseteq 2^X$ satisfies

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

1. $\emptyset, X \in \mathcal{T}$

2. ${\mathcal T}$ is closed under finite intersections

Recall:

A topological space is a pair (X, \mathcal{T}) where $\mathcal{T} \subseteq 2^X$ satisfies

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

1. $\emptyset, X \in \mathcal{T}$

- 2. ${\mathcal T}$ is closed under finite intersections
- 3. \mathcal{T} is closed under arbitrary unions

Recall:

A topological space is a pair (X, \mathcal{T}) where $\mathcal{T} \subseteq 2^X$ satisfies

1. $\emptyset, X \in \mathcal{T}$

- 2. \mathcal{T} is closed under finite intersections
- 3. \mathcal{T} is closed under arbitrary unions

Example

The real line \mathbb{R} is equipped with its standard topology where $U \subseteq \mathbb{R}$ is open iff

$$\forall x \in U \exists \varepsilon > 0 \forall y \in \mathbb{R} (|x - y| < \varepsilon \Rightarrow y \in U)$$

(日) (日) (日) (日) (日) (日) (日)

More Examples of Topological Spaces

The rational numbers, Q, are similarly equipped with the interval topology.

More Examples of Topological Spaces

The rational numbers, Q, are similarly equipped with the interval topology.

For any n, \mathbb{R}^n has a standard topology generated by open balls

$$B_{\varepsilon}(x) = \{y \in \mathbb{R}^n : d(x,y) < \varepsilon\}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

More Examples of Topological Spaces

- The rational numbers, Q, are similarly equipped with the interval topology.
- For any n, \mathbb{R}^n has a standard topology generated by open balls

$$B_{\varepsilon}(x) = \{y \in \mathbb{R}^n : d(x, y) < \varepsilon\}$$

If (W, ≼) is a partially ordered set, then W can be endowed with the down-set topology by letting U ⊂ W be open if

$$\forall w \succcurlyeq v \ (w \in U \Rightarrow v \in U).$$

The up-set topology is defined dually.

 $S \colon \mathbb{R} o \mathbb{R}$ is continuous if

 $\forall x \in \mathbb{R} \forall \varepsilon > 0 \exists \delta > 0 \ (d(x, y) < \delta \Rightarrow d(S(x), S(y)) < \varepsilon)$

 $\mathcal{S} \colon \mathbb{R} \to \mathbb{R}$ is continuous if

 $\forall x \in \mathbb{R} \forall \varepsilon > 0 \exists \delta > 0 \ (d(x, y) < \delta \Rightarrow d(S(x), S(y)) < \varepsilon)$

More generally, $S: X \to Y$ is continuous if $U \subset Y$ is open $\Rightarrow S^{-1}(U)$ is open.

 $\mathcal{S} \colon \mathbb{R} o \mathbb{R}$ is continuous if

 $\forall x \in \mathbb{R} \forall \varepsilon > \mathsf{O} \exists \delta > \mathsf{O} \left(d(x, y) < \delta \Rightarrow d(S(x), S(y)) < \varepsilon \right)$

More generally, $S: X \to Y$ is continuous if $U \subset Y$ is open $\Rightarrow S^{-1}(U)$ is open.

If moreover S(U) is open whenever U is open we say S is an interior map.

 $\mathcal{S} \colon \mathbb{R} \to \mathbb{R}$ is continuous if

 $\forall x \in \mathbb{R} \forall \varepsilon > 0 \exists \delta > 0 \ (d(x, y) < \delta \Rightarrow d(S(x), S(y)) < \varepsilon)$

More generally, $S: X \to Y$ is continuous if $U \subset Y$ is open $\Rightarrow S^{-1}(U)$ is open.

If moreover S(U) is open whenever U is open we say S is an interior map.

Examples

▶ $S : \mathbb{R} \to \mathbb{R}$ is continuous whenever *S* is a polynomial.

 $\mathcal{S} \colon \mathbb{R} o \mathbb{R}$ is continuous if

 $\forall x \in \mathbb{R} \forall \varepsilon > \mathsf{O} \exists \delta > \mathsf{O} \left(d(x, y) < \delta \Rightarrow d(S(x), S(y)) < \varepsilon \right)$

More generally, $S: X \to Y$ is continuous if $U \subset Y$ is open $\Rightarrow S^{-1}(U)$ is open.

If moreover S(U) is open whenever U is open we say S is an interior map.

Examples

- $S \colon \mathbb{R} \to \mathbb{R}$ is continuous whenever *S* is a polynomial.
- If (W, ≼) is a preorder then S: W → W is continuous iff increasing:

$$\forall \mathbf{v}, \mathbf{w} \ \big(\mathbf{w} \preccurlyeq \mathbf{v} \Rightarrow \mathbf{S}(\mathbf{w}) \preccurlyeq \mathbf{S}(\mathbf{v}) \big)$$

A dynamical system (X, S) is probability preserving if for all open A ⊂ X, |A| = |S⁻¹(A)|, where |A| denotes probability (or volume).

- A dynamical system (X, S) is probability preserving if for all open A ⊂ X, |A| = |S⁻¹(A)|, where |A| denotes probability (or volume).
- A dynamical system (X, S) is Poincaré recurrent (for our purposes) if whenever A is non-empty and open there are x ∈ A and n > 0 such that Sⁿ(x) ∈ A.

(日) (日) (日) (日) (日) (日) (日)

- A dynamical system (X, S) is probability preserving if for all open A ⊂ X, |A| = |S⁻¹(A)|, where |A| denotes probability (or volume).
- A dynamical system (X, S) is Poincaré recurrent (for our purposes) if whenever A is non-empty and open there are x ∈ A and n > 0 such that Sⁿ(x) ∈ A.

(日) (日) (日) (日) (日) (日) (日)

Theorem (Poincaré)

Every probability-preserving system is Poincaré recurrent.

- A dynamical system (X, S) is probability preserving if for all open A ⊂ X, |A| = |S⁻¹(A)|, where |A| denotes probability (or volume).
- A dynamical system (X, S) is Poincaré recurrent (for our purposes) if whenever A is non-empty and open there are x ∈ A and n > 0 such that Sⁿ(x) ∈ A.

Theorem (Poincaré)

Every probability-preserving system is Poincaré recurrent.

A dynamical system (X, S) is minimal if whenever A is non-empty and open and x ∈ X, there is n > 0 such that Sⁿ(x) ∈ A.

A Minimal System

A Probability-Preserving System

▲□▶▲□▶▲□▶▲□▶ □ のへで

Language $(\mathcal{L}_{\blacksquare\circ})$:

$\boldsymbol{\rho} \mid \neg \varphi \mid \varphi \land \psi \mid \blacksquare \varphi \mid \circ \varphi$

▲□▶▲□▶▲≡▶▲≡▶ ≡ のへで

Language (\mathcal{L}_{\bullet}) :

$$\boldsymbol{\rho} \mid \neg \varphi \mid \varphi \wedge \psi \mid \blacksquare \varphi \mid \circ \varphi$$

Models: $(X, S, \llbracket \cdot \rrbracket)$ consisting of a dynamical system equipped with a valuation $\llbracket \cdot \rrbracket : \mathcal{L}_{\blacksquare \circ} \to 2^X$ such that

Language $(\mathcal{L}_{\blacksquare \circ})$:

$$\boldsymbol{\rho} \mid \neg \varphi \mid \varphi \land \psi \mid \blacksquare \varphi \mid \circ \varphi$$

Models: $(X, S, \llbracket \cdot \rrbracket)$ consisting of a dynamical system equipped with a valuation $\llbracket \cdot \rrbracket : \mathcal{L}_{\blacksquare \circ} \to 2^X$ such that

▲□▶▲□▶▲□▶▲□▶ □ のQ@

▶ [[·]] commutes with Booleans.

Language $(\mathcal{L}_{\blacksquare \circ})$:

$$\boldsymbol{\rho} \mid \neg \varphi \mid \varphi \land \psi \mid \blacksquare \varphi \mid \circ \varphi$$

Models: $(X, S, \llbracket \cdot \rrbracket)$ consisting of a dynamical system equipped with a valuation $\llbracket \cdot \rrbracket : \mathcal{L}_{\blacksquare \circ} \to 2^X$ such that

▲□▶▲□▶▲□▶▲□▶ □ のQ@

[[·]] commutes with Booleans.

$$\blacktriangleright \ \llbracket \blacksquare \varphi \rrbracket = \llbracket \varphi \rrbracket^{\circ} \text{ (interior)}$$

Language $(\mathcal{L}_{\blacksquare \circ})$:

$$\boldsymbol{\rho} \mid \neg \varphi \mid \varphi \land \psi \mid \blacksquare \varphi \mid \circ \varphi$$

Models: $(X, S, \llbracket \cdot \rrbracket)$ consisting of a dynamical system equipped with a valuation $\llbracket \cdot \rrbracket : \mathcal{L}_{\blacksquare \circ} \to 2^X$ such that

▲□▶▲□▶▲□▶▲□▶ □ のQ@

• $\llbracket \cdot \rrbracket$ commutes with Booleans.

•
$$\llbracket \blacksquare \varphi \rrbracket = \llbracket \varphi \rrbracket^{\circ}$$
 (interior)

•
$$\llbracket \circ \varphi \rrbracket = S^{-1} \llbracket \varphi \rrbracket$$
 (next)

Language $(\mathcal{L}_{\blacksquare \circ})$:

$$\boldsymbol{\rho} \mid \neg \varphi \mid \varphi \land \psi \mid \blacksquare \varphi \mid \circ \varphi$$

Models: $(X, S, \llbracket \cdot \rrbracket)$ consisting of a dynamical system equipped with a valuation $\llbracket \cdot \rrbracket : \mathcal{L}_{\blacksquare \circ} \to 2^X$ such that

• $\llbracket \cdot \rrbracket$ commutes with Booleans.

•
$$\llbracket \blacksquare \varphi \rrbracket = \llbracket \varphi \rrbracket^{\circ}$$
 (interior)

•
$$\llbracket \circ \varphi \rrbracket = S^{-1} \llbracket \varphi \rrbracket$$
 (next)

Introduced by Artemov, Davoren and Nerode (1997).

Taut

All propositional tautologies.

(ロ)、(型)、(E)、(E)、 E) のQの

K T 4

Taut Axioms for ■:

All propositional tautologies.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

$$egin{aligned} & \blacksquare(p o q) o (\blacksquare p o \blacksquare q) \ & \blacksquare p o p \ & \blacksquare p o \blacksquare \blacksquare p \end{aligned}$$

Temporal axioms:

$$\begin{array}{ll} \mathsf{Neg}_{\circ} & \neg \circ p \leftrightarrow \circ \neg p \\ \mathsf{And}_{\circ} & \circ (p \land q) \leftrightarrow \circ p \land \circ q \end{array}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

(ロ) (同) (三) (三) (三) (三) (○) (○)

Positive results on S4C

1997 Artemov, Davoren and Nerode proved that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

► S4C is Kripke-complete.
1997 Artemov, Davoren and Nerode proved that

S4C is Kripke-complete.

Proof idea: The canonical model satisfies all frame conditions.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

1997 Artemov, Davoren and Nerode proved that

- S4C is Kripke-complete.
 - Proof idea: The canonical model satisfies all frame conditions.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

it has the finite model property

1997 Artemov, Davoren and Nerode proved that

- S4C is Kripke-complete.
 - Proof idea: The canonical model satisfies all frame conditions.
- it has the finite model property

Beware: Filtration does not preserve the monotonicity condition on *S*, so other techniques are needed.

(ロ) (同) (三) (三) (三) (○) (○)

1997 Artemov, Davoren and Nerode proved that

- S4C is Kripke-complete.
 - Proof idea: The canonical model satisfies all frame conditions.
- it has the finite model property

Beware: Filtration does not preserve the monotonicity condition on *S*, so other techniques are needed.

(ロ) (同) (三) (三) (三) (○) (○)

2005 Kremer and Mints showed that the above results also hold for S4H, the variant of S4C where *f* is a homeomorphism (equivalently, an interior map).

1997 Artemov, Davoren and Nerode proved that

- S4C is Kripke-complete.
 - Proof idea: The canonical model satisfies all frame conditions.
- it has the finite model property

Beware: Filtration does not preserve the monotonicity condition on *S*, so other techniques are needed.

- 2005 Kremer and Mints showed that the above results also hold for S4H, the variant of S4C where *f* is a homeomorphism (equivalently, an interior map).
- 2005 Slavnov showed that S4C is complete for interpretations on $\{\mathbb{R}^n\}_{n<\omega}$.

1997 Artemov, Davoren and Nerode proved that

- S4C is Kripke-complete.
 - Proof idea: The canonical model satisfies all frame conditions.
- it has the finite model property

Beware: Filtration does not preserve the monotonicity condition on *S*, so other techniques are needed.

- 2005 Kremer and Mints showed that the above results also hold for S4H, the variant of S4C where *f* is a homeomorphism (equivalently, an interior map).
- 2005 Slavnov showed that S4C is complete for interpretations on $\{\mathbb{R}^n\}_{n<\omega}$.
- 2006 DFD showed that S4C is complete for interpretations on \mathbb{R}^2 .

Language $(\mathcal{L}_{\bullet \Box})$:

$\boldsymbol{\rho} \mid \neg \varphi \mid \varphi \land \psi \mid \boldsymbol{\Box} \varphi \mid \circ \varphi \mid \boldsymbol{\Box} \varphi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Language ($\mathcal{L}_{\blacksquare \circ \Box}$): $p \mid \neg \varphi \mid \varphi \land \psi \mid \blacksquare \varphi \mid \circ \varphi \mid \Box \varphi$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Semantics:

•
$$\llbracket \Box \varphi \rrbracket = \bigcap_{n < \omega} S^{-n} \llbracket \varphi \rrbracket$$
 (henceforth).

Language ($\mathcal{L}_{\blacksquare \circ \Box}$): $p \mid \neg \varphi \mid \varphi \land \psi \mid \blacksquare \varphi \mid \circ \varphi \mid \Box \varphi$

Semantics:

• $\llbracket \Box \varphi \rrbracket = \bigcap_{n < \omega} S^{-n} \llbracket \varphi \rrbracket$ (henceforth).

Equivalently, x satisfies □φ if φ holds on every point of the orbit of x:

 $\{x, S(x), S(S(x)), \ldots\}.$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Language ($\mathcal{L}_{\blacksquare \circ \Box}$): $p \mid \neg \varphi \mid \varphi \land \psi \mid \blacksquare \varphi \mid \circ \varphi \mid \Box \varphi$

Semantics:

- $\llbracket \Box \varphi \rrbracket = \bigcap_{n < \omega} S^{-n} \llbracket \varphi \rrbracket$ (henceforth).
- Equivalently, x satisfies □φ if φ holds on every point of the orbit of x:

 $\{x, S(x), S(S(x)), \ldots\}.$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

• Its dual is $\diamond := \neg \Box \neg$ (eventually).

Language ($\mathcal{L}_{\blacksquare \circ \Box}$): $p \mid \neg \varphi \mid \varphi \land \psi \mid \blacksquare \varphi \mid \circ \varphi \mid \Box \varphi$

Semantics:

- $\llbracket \Box \varphi \rrbracket = \bigcap_{n < \omega} S^{-n} \llbracket \varphi \rrbracket$ (henceforth).
- Equivalently, x satisfies □φ if φ holds on every point of the orbit of x:

 $\{x, S(x), S(S(x)), \ldots\}.$

(日) (日) (日) (日) (日) (日) (日)

• Its dual is
$$\diamond := \neg \Box \neg$$
 (eventually).

Introduced by Kremer and Mints (2005).

Kremer and Mints axioms

Kremer and Mints proposed the axiomatization KM of DTL given by

$$\mathsf{KM} = \mathsf{S4C} + \mathsf{Fix}_{\Box} + \mathsf{Ind}_{\Box} + \mathsf{N}_{\Box}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

where

$$\begin{array}{ll} \mathsf{Fix}_{\Box} & \Box p \to p \land \circ \Box p \\ \mathsf{Ind}_{\Box} & \Box (p \to \circ p) \to (p \to \Box p) \end{array}$$

Kremer and Mints axioms

Kremer and Mints proposed the axiomatization KM of DTL given by

$$\mathsf{KM} = \mathsf{S4C} + \mathsf{Fix}_{\Box} + \mathsf{Ind}_{\Box} + \mathsf{N}_{\Box}$$

where Fix

Ir

$$egin{aligned} & \Box p o p \wedge \circ \Box p \ & \operatorname{idd}_{\Box} & \Box (p o \circ p) o (p o \Box p) \end{aligned}$$

This is the natural axiomatization obtained by combining S4C with Linear Temporal Logic (LTL).

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Kremer and Mints axioms

Kremer and Mints proposed the axiomatization KM of DTL given by

$$\mathsf{KM} = \mathsf{S4C} + \mathsf{Fix}_{\Box} + \mathsf{Ind}_{\Box} + \mathsf{N}_{\Box}$$

where

$$\begin{array}{ll} \mathsf{Fix}_{\Box} & \Box p \to p \land \circ \Box p \\ \mathsf{Ind}_{\Box} & \Box (p \to \circ p) \to (p \to \Box p) \end{array}$$

This is the natural axiomatization obtained by combining S4C with Linear Temporal Logic (LTL).

Kremer and Mints left the question of completeness open.

Recall that a dynamical system (X, S) is Poincaré recurrent if whenever A ⊆ X is open and non-empty, there are x ∈ A and n > 0 such that Sⁿ(x) ∈ A.

(ロ) (同) (三) (三) (三) (○) (○)

Recall that a dynamical system (X, S) is Poincaré recurrent if whenever A ⊆ X is open and non-empty, there are x ∈ A and n > 0 such that Sⁿ(x) ∈ A.

This is equivalent to the validity of

$$\blacksquare \varphi \to \blacklozenge \circ \diamondsuit \varphi$$

(ロ) (同) (三) (三) (三) (○) (○)

Recall that a dynamical system (X, S) is Poincaré recurrent if whenever A ⊆ X is open and non-empty, there are x ∈ A and n > 0 such that Sⁿ(x) ∈ A.

This is equivalent to the validity of

 $\blacksquare \varphi \to \blacklozenge \circ \diamondsuit \varphi$

▶ Recall that (X, S) is minimal if for all $x \in X$ and non-empty, open $A \subseteq X$ there is n > 0 such that $S^n(x) \in A$.

Recall that a dynamical system (X, S) is Poincaré recurrent if whenever A ⊆ X is open and non-empty, there are x ∈ A and n > 0 such that Sⁿ(x) ∈ A.

This is equivalent to the validity of

 $\blacksquare \varphi \to \blacklozenge \circ \diamondsuit \varphi$

▶ Recall that (X, S) is minimal if for all $x \in X$ and non-empty, open $A \subseteq X$ there is n > 0 such that $S^n(x) \in A$.

This is equivalent to the validity of

 $\exists \blacksquare \varphi \to \forall \Diamond \varphi$

・ロト・ 日本・ 日本・ 日本・ 日本・ つくぐ

Here, \forall and \exists are the universal modalities.

2005 Kremer and Mints showed that DTL cannot have the finite model property or even the locally finite model property.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

2005 Kremer and Mints showed that DTL cannot have the finite model property or even the locally finite model property.

2006 Konev, Kontchakov, Wolter and Zakaryashev proved that

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

DTL is undecidable

2005 Kremer and Mints showed that DTL cannot have the finite model property or even the locally finite model property.

- 2006 Konev, Kontchakov, Wolter and Zakaryashev proved that
 - DTL is undecidable
 - DTL_H, where *f* is restricted to be a homeomorphism/interior map, is non-axiomatizable

(ロ) (同) (三) (三) (三) (○) (○)

2005 Kremer and Mints showed that DTL cannot have the finite model property or even the locally finite model property.

- 2006 Konev, Kontchakov, Wolter and Zakaryashev proved that
 - DTL is undecidable
 - DTL_H, where *f* is restricted to be a homeomorphism/interior map, is non-axiomatizable

2014 DFD showed that DTL is not finitely axiomatizable, hence KM is incomplete.

The Post Correspondence Problem

Fix a sequence of pairs

$$P = ((\boldsymbol{v}_0, \boldsymbol{u}_0), \dots, (\boldsymbol{v}_k, \boldsymbol{u}_k))$$

with

$$oldsymbol{v}_i = oldsymbol{b}_0^i \dots oldsymbol{b}_{\ell_i}^i$$

 $oldsymbol{u}_i = oldsymbol{c}_0^i \dots oldsymbol{c}_{r_i}^i$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

words over some alphabet A.

The Post Correspondence Problem

Fix a sequence of pairs

$$\boldsymbol{P} = \big((\boldsymbol{v}_0, \boldsymbol{u}_0), \dots, (\boldsymbol{v}_k, \boldsymbol{u}_k) \big)$$

with

$$oldsymbol{v}_i = oldsymbol{b}_0^i \dots oldsymbol{b}_{\ell_i}^i$$

 $oldsymbol{u}_i = oldsymbol{c}_0^i \dots oldsymbol{c}_{r_i}^i$

words over some alphabet A.

Problem (PCP): Does there exist a sequence i_1, \ldots, i_N with

$$\boldsymbol{v}_{i_1}*\ldots*\boldsymbol{v}_{i_N}=\boldsymbol{u}_{i_1}*\ldots*\boldsymbol{u}_{i_N}?$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A Solvable PCP

$$\mathbf{v}_0 = ab$$
 $\mathbf{u}_0 = a$
 $\mathbf{v}_1 = d$ $\mathbf{u}_1 = cd$
 $\mathbf{v}_2 = c$ $\mathbf{u}_2 = b$

◆□ > ◆□ > ◆ 三 > ◆ 三 > ● ○ ○ ○ ○

A Solvable PCP

$$\mathbf{v}_0 = ab \quad \mathbf{u}_0 = a$$

 $\mathbf{v}_1 = d \quad \mathbf{u}_1 = cd$
 $\mathbf{v}_2 = c \quad \mathbf{u}_2 = b$

Then,

$$\boldsymbol{v}_0 \ast \boldsymbol{v}_2 \ast \boldsymbol{v}_1 = \boldsymbol{u}_0 \ast \boldsymbol{u}_2 \ast \boldsymbol{u}_1$$
$$= abcd$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

A Solvable PCP

$$v_0 = ab \quad u_0 = a v_1 = d \quad u_1 = cd v_2 = c \quad u_2 = b$$

Then,

$$\boldsymbol{v}_0 \ast \boldsymbol{v}_2 \ast \boldsymbol{v}_1 = \boldsymbol{u}_0 \ast \boldsymbol{u}_2 \ast \boldsymbol{u}_1$$
$$= abcd$$

Theorem (Post)

The set of PCP instances without a solution is not computably enumerable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Goal: For an alphabet *A* and a PCP instance *P*, define $\varphi_{A,P}$ so that *P* has a solution iff $\varphi_{A,P}$ is satisfiable over the class of dynamical systems with an interior map.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Goal: For an alphabet *A* and a PCP instance *P*, define $\varphi_{A,P}$ so that *P* has a solution iff $\varphi_{A,P}$ is satisfiable over the class of dynamical systems with an interior map.

Some useful abbreviations:

 $(stripe
ightarrow igle(\neg stripe \land igle arphi)) \land (\neg stripe
ightarrow igle(stripe \land igle arphi))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Goal: For an alphabet *A* and a PCP instance *P*, define $\varphi_{A,P}$ so that *P* has a solution iff $\varphi_{A,P}$ is satisfiable over the class of dynamical systems with an interior map.

Some useful abbreviations:

 $\blacktriangleright \ \blacklozenge_{stripe} \varphi :=$

 $(\textit{stripe} \rightarrow \blacklozenge (\neg \textit{stripe} \land \blacklozenge \varphi)) \land (\neg \textit{stripe} \rightarrow \blacklozenge (\textit{stripe} \land \blacklozenge \varphi))$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

$$\blacktriangleright \ \Box^{$$

Goal: For an alphabet *A* and a PCP instance *P*, define $\varphi_{A,P}$ so that *P* has a solution iff $\varphi_{A,P}$ is satisfiable over the class of dynamical systems with an interior map.

Some useful abbreviations:

$$(\textit{stripe} \rightarrow \blacklozenge(\neg \textit{stripe} \land \blacklozenge \varphi)) \land (\neg \textit{stripe} \rightarrow \blacklozenge(\textit{stripe} \land \blacklozenge \varphi))$$

(ロ) (同) (三) (三) (三) (○) (○)

$$\blacktriangleright \ \Box^{$$

$$\blacktriangleright \ \Box^{\leq end} \varphi := \Box(\Diamond end \to \varphi)$$

Goal: For an alphabet *A* and a PCP instance *P*, define $\varphi_{A,P}$ so that *P* has a solution iff $\varphi_{A,P}$ is satisfiable over the class of dynamical systems with an interior map.

Some useful abbreviations:

$$(stripe
ightarrow igle(\neg stripe \land igle arphi)) \land (\neg stripe
ightarrow igle(stripe \land igle arphi))$$

(ロ) (同) (三) (三) (三) (○) (○)

$$\blacktriangleright \ \Box^{$$

$$\blacktriangleright \ \Box^{\leq end} \varphi := \Box(\Diamond end \to \varphi)$$

$$\blacktriangleright \ \textit{lw}_i = \textit{left}_{b_0^i} \land \blacklozenge_{\textit{stripe}} \left(\textit{left}_{b_2^i} \land \dots \land \blacklozenge_{\textit{stripe}} \textit{left}_{b_{\ell_i}^i}\right)$$

We will define

$$\varphi_{\mathsf{A},\mathsf{P}} := \varphi_{\mathsf{eq}} \land \varphi_{\mathsf{stripe}} \land \varphi_{\mathsf{left}} \land \varphi_{\mathsf{right}}$$

We will define

$$\varphi_{\mathsf{A},\mathsf{P}} := \varphi_{\mathsf{eq}} \land \varphi_{\mathsf{stripe}} \land \varphi_{\mathsf{left}} \land \varphi_{\mathsf{right}}$$

$$\blacktriangleright \varphi_{eq} := \Diamond \big(end \land \bigwedge_{a \in A} \blacksquare (left_a \leftrightarrow right_a) \big)$$

We will define

$$\varphi_{\mathsf{A},\mathsf{P}} := \varphi_{\mathsf{eq}} \land \varphi_{\mathsf{stripe}} \land \varphi_{\mathsf{left}} \land \varphi_{\mathsf{right}}$$

$$\blacktriangleright \varphi_{eq} := \Diamond \big(end \land \bigwedge_{a \in A} \blacksquare (left_a \leftrightarrow right_a) \big)$$

•
$$\varphi_{pair} := \Box \Big(\bigwedge_{i \leq k} pair_i \land \bigwedge_{i \leq j} \neg (pair_i \land pair_j) \Big)$$

くりょう 小田 マイビット 日 うくの

We will define

$$\varphi_{\mathsf{A},\mathsf{P}} := \varphi_{\mathsf{eq}} \land \varphi_{\mathsf{stripe}} \land \varphi_{\mathsf{left}} \land \varphi_{\mathsf{right}}$$

$$\blacktriangleright \varphi_{eq} := \Diamond \big(end \land \bigwedge_{a \in A} \blacksquare (left_a \leftrightarrow right_a) \big)$$

•
$$\varphi_{pair} := \Box \Big(\bigwedge_{i \leq k} pair_i \land \bigwedge_{i \leq j} \neg (pair_i \land pair_j) \Big)$$

•
$$\varphi_{stripe} := \Box^{$$
Defining φ_{left}

 $\varphi_{\textit{left}}$ is the conjunction of the following:

Defining φ_{left}

 φ_{left} is the conjunction of the following:

 $\land \bigwedge_{a \neq b} \Box^{\leq end} \blacksquare \neg (\mathit{left}_a \land \mathit{left}_b) \land \Box^{\leq end} (\mathit{left} \leftrightarrow \bigvee_{a \in A} \mathit{left}_a)$

 φ_{left} is the conjunction of the following:

$$\blacktriangleright \bigwedge_{a \neq b} \Box^{\leq end} \blacksquare \neg (\mathit{left}_a \land \mathit{left}_b) \land \Box^{\leq end} (\mathit{left} \leftrightarrow \bigvee_{a \in A} \mathit{left}_a)$$

$$\blacktriangleright \bigwedge_{a \in A} \Box^{$$

 φ_{left} is the conjunction of the following:

$$\blacktriangleright \bigwedge_{a \neq b} \Box^{\leq end} \blacksquare \neg (\mathit{left}_a \land \mathit{left}_b) \land \Box^{\leq end} (\mathit{left} \leftrightarrow \bigvee_{a \in A} \mathit{left}_a)$$

$$\blacktriangleright \ \bigwedge_{a \in A} \Box^{$$

$$\blacksquare \neg \textit{left} \land \Box^{\leq \textit{end}} \blacksquare (\neg \textit{left} \rightarrow \neg \blacklozenge_{\textit{stripe}} \textit{left})$$

 φ_{left} is the conjunction of the following:

$$\blacktriangleright \bigwedge_{a \neq b} \Box^{\leq end} \blacksquare \neg (\mathit{left}_a \land \mathit{left}_b) \land \Box^{\leq end} (\mathit{left} \leftrightarrow \bigvee_{a \in A} \mathit{left}_a)$$

$$\blacktriangleright \ \bigwedge_{a \in A} \Box^{$$

$$\blacksquare \neg \textit{left} \land \Box^{\leq \textit{end}} \blacksquare (\neg \textit{left} \rightarrow \neg \blacklozenge_{\textit{stripe}} \textit{left})$$

$$\blacktriangleright \Box^{$$

 φ_{left} is the conjunction of the following:

$$\begin{split} & \wedge_{a \neq b} \Box^{\leq end} \blacksquare \neg (left_a \land left_b) \land \Box^{\leq end} (left \leftrightarrow \bigvee_{a \in A} left_a) \\ & \wedge_{a \in A} \Box^{$$

 φ_{left} is the conjunction of the following:

$$\wedge_{a \neq b} \Box^{\leq end} \blacksquare \neg (left_a \land left_b) \land \Box^{\leq end} (left \leftrightarrow \bigvee_{a \in A} left_a)$$

$$\wedge_{a \in A} \Box^{

$$\blacksquare \neg left \land \Box^{\leq end} \blacksquare (\neg left \rightarrow \neg \blacklozenge_{stripe} left)$$

$$\square^{

$$\square^{$$$$$$

• pair_i $\rightarrow \circ lw_i$

 φ_{left} is the conjunction of the following:

$$\begin{split} & \bigwedge_{a \neq b} \Box^{\leq end} \blacksquare \neg (left_a \land left_b) \land \Box^{\leq end} (left \leftrightarrow \bigvee_{a \in A} left_a) \\ & \bigwedge_{a \in A} \Box^{$$

$$\blacktriangleright \Box^{$$

 φ_{left} is the conjunction of the following:

$$\begin{split} & \bigwedge_{a \neq b} \Box^{\leq end} \blacksquare \neg (left_a \land left_b) \land \Box^{\leq end} (left \leftrightarrow \bigvee_{a \in A} left_a) \\ & \bigwedge_{a \in A} \Box^{$$

$$\blacktriangleright \Box^{$$

The formula φ_{right} is defined similarly, replacing *left* by *right*, etc.

・ロト・(部・・モー・モー・)への

The set of worlds W

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The relation \preccurlyeq

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The function S

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The valuation of end for \Diamond end

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The valuation of *stripe* for $\Box^{<end}$ \blacksquare (*stripe* $\leftrightarrow \circ$ *stripe*)

The coding of \boldsymbol{v}_0 and \boldsymbol{u}_0

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The coding of $\boldsymbol{v}_0 * \boldsymbol{v}_1$ and $\boldsymbol{u}_0 * \boldsymbol{u}_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

The coding of $\boldsymbol{v}_0 * \boldsymbol{v}_1 * \boldsymbol{v}_2$ and $\boldsymbol{u}_0 * \boldsymbol{u}_1 * \boldsymbol{u}_2$

The formula $\varphi_{eq} := \Diamond (end \land \bigwedge_{a \in A} \blacksquare (left_a \leftrightarrow right_a))$ is satisfied!

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

Lemma

The following are equivalent:

1. The PCP instance (A, P) is solvable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Lemma

The following are equivalent:

- 1. The PCP instance (A, P) is solvable.
- 2. $\varphi_{A,P}$ is satisfiable on a dynamical system with an interior map.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lemma

The following are equivalent:

- 1. The PCP instance (A, P) is solvable.
- 2. $\varphi_{A,P}$ is satisfiable on a dynamical system with an interior map.
- 3. $\varphi_{A,P}$ is satisfiable on a Kripke model with an interior map.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Lemma

The following are equivalent:

- 1. The PCP instance (A, P) is solvable.
- 2. $\varphi_{A,P}$ is satisfiable on a dynamical system with an interior map.
- 3. $\varphi_{A,P}$ is satisfiable on a Kripke model with an interior map.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Proof.

(1 \Rightarrow 3): By the construction we have seen.

Lemma

The following are equivalent:

- 1. The PCP instance (A, P) is solvable.
- 2. $\varphi_{A,P}$ is satisfiable on a dynamical system with an interior map.
- 3. $\varphi_{A,P}$ is satisfiable on a Kripke model with an interior map.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proof.

 $(1\Rightarrow3):$ By the construction we have seen. $(1\Rightarrow2):$ Kripke models are a special case of topological models.

Lemma

The following are equivalent:

- 1. The PCP instance (A, P) is solvable.
- 2. $\varphi_{A,P}$ is satisfiable on a dynamical system with an interior map.
- 3. $\varphi_{A,P}$ is satisfiable on a Kripke model with an interior map.

(日) (日) (日) (日) (日) (日) (日)

Proof.

(1 \Rightarrow 3): By the construction we have seen.

 $(1\Rightarrow2):$ Kripke models are a special case of topological models.

Other implications require some care.

Lemma

The following are equivalent:

- 1. The PCP instance (A, P) is solvable.
- 2. $\varphi_{A,P}$ is satisfiable on a dynamical system with an interior map.
- 3. $\varphi_{A,P}$ is satisfiable on a Kripke model with an interior map.

Proof.

 $(1 \Rightarrow 3)$: By the construction we have seen.

 $(1\Rightarrow2):$ Kripke models are a special case of topological models.

Other implications require some care.

Beware: Topologically satisfiable formulas are not always Kripke-satisfiable.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Non-axiomatizability and undecidability

Theorem

The set of $\mathcal{L}_{\blacksquare \circ \Box}$ formulas valid over the class of spaces with an interior map is not computably enumerable.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Non-axiomatizability and undecidability

Theorem

The set of $\mathcal{L}_{\blacksquare \circ \Box}$ formulas valid over the class of spaces with an interior map is not computably enumerable.

Theorem

The set of $\mathcal{L}_{\blacksquare \circ \Box}$ formulas valid over the class of all dynamical systems is undecidable.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Non-axiomatizability and undecidability

Theorem

The set of $\mathcal{L}_{\blacksquare \circ \Box}$ formulas valid over the class of spaces with an interior map is not computably enumerable.

Theorem

The set of $\mathcal{L}_{\blacksquare \circ \Box}$ formulas valid over the class of all dynamical systems is undecidable.

The proof proceeds by a similar (but more involved) reduction of a reachability problem for lossy channel systems.

(ロ) (同) (三) (三) (三) (三) (○) (○)

Definition

A topological space X is Aleksandroff if arbitrary intersections of open sets are open.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Definition

A topological space X is Aleksandroff if arbitrary intersections of open sets are open.

Theorem

A space X is Aleksandroff iff the topology is the up-set topology generated by some partial order \preccurlyeq .

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Definition

A topological space X is Aleksandroff if arbitrary intersections of open sets are open.

Theorem

A space X is Aleksandroff iff the topology is the up-set topology generated by some partial order \preccurlyeq .

Proof.

 (\Leftarrow) Recall that the up-set topology consists of the sets that are upwards-closed under \preccurlyeq . It is not hard to check that such sets are closed under arbitrary intersections.

(日) (日) (日) (日) (日) (日) (日)

Definition

A topological space X is Aleksandroff if arbitrary intersections of open sets are open.

Theorem

A space X is Aleksandroff iff the topology is the up-set topology generated by some partial order \preccurlyeq .

Proof.

(⇐) Recall that the up-set topology consists of the sets that are upwards-closed under \preccurlyeq . It is not hard to check that such sets are closed under arbitrary intersections.

 (\Rightarrow) If X is Alexandroff, define $x \preccurlyeq y$ if

$$y \in \bigcap \{ U : U \text{ is open and } x \in U \}$$

(日) (日) (日) (日) (日) (日) (日)

Proposition The formula

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

is Kripke-valid but not topologically valid

Proposition The formula

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

is Kripke-valid but not topologically valid

Kripke validity:

Proposition The formula

$$\Box \blacksquare p \to \blacksquare \Box p$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

is Kripke-valid but not topologically valid

Kripke validity:

$$\llbracket \Box \blacksquare \rho \rrbracket \quad = \bigcap_{n=0}^{\infty} S^{-n} \llbracket \blacksquare \rho \rrbracket$$

Proposition The formula

is Kripke-valid but not topologically valid

Kripke validity:

$$\llbracket \Box \blacksquare \rho \rrbracket \quad = \bigcap_{n=0}^{\infty} S^{-n} \llbracket \blacksquare \rho \rrbracket = \bigcap_{n=0}^{\infty} S^{-n} (\llbracket \rho \rrbracket^{\circ})$$

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙
Proposition The formula

 $\Box \blacksquare p \rightarrow \blacksquare \Box p$

is Kripke-valid but not topologically valid

Kripke validity:

$$\begin{bmatrix} \Box \blacksquare \rho \end{bmatrix} = \bigcap_{n=0}^{\infty} S^{-n} \llbracket \blacksquare \rho \end{bmatrix} = \bigcap_{n=0}^{\infty} S^{-n} (\llbracket \rho \rrbracket^{\circ})$$

continuity $\subset \bigcap_{n=0}^{\infty} (S^{-n} \llbracket \rho \rrbracket)^{\circ}$

・ロト・西ト・モート ヨー シタウ

Proposition The formula

 $\Box \blacksquare p \rightarrow \blacksquare \Box p$

is Kripke-valid but not topologically valid

Kripke validity:

 $\begin{bmatrix} \Box \blacksquare \rho \end{bmatrix} = \bigcap_{n=0}^{\infty} S^{-n} \llbracket \blacksquare \rho \end{bmatrix} = \bigcap_{n=0}^{\infty} S^{-n} (\llbracket \rho \rrbracket^{\circ})$ continuity $\subset \bigcap_{n=0}^{\infty} (S^{-n} \llbracket \rho \rrbracket)^{\circ}$ Aleksandroffness $\subset (\bigcap_{n=0}^{\infty} S^{-n} \llbracket \rho \rrbracket)^{\circ}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Proposition The formula

$$\Box \blacksquare p \to \blacksquare \Box p$$

is Kripke-valid but not topologically valid

Kripke validity:

$$\begin{bmatrix} \Box \blacksquare \rho \end{bmatrix} = \bigcap_{n=0}^{\infty} S^{-n} \llbracket \blacksquare \rho \end{bmatrix} = \bigcap_{n=0}^{\infty} S^{-n} (\llbracket \rho \rrbracket^{\circ})$$

continuity $\subset \bigcap_{n=0}^{\infty} (S^{-n} \llbracket \rho \rrbracket)^{\circ}$
Aleksandroffness $\subset (\bigcap_{n=0}^{\infty} S^{-n} \llbracket \rho \rrbracket)^{\circ} = \llbracket \Box \rho \rrbracket^{\circ}$

Proposition The formula

 $\Box \blacksquare p \rightarrow \blacksquare \Box p$

is Kripke-valid but not topologically valid

Kripke validity:

 $\begin{bmatrix} \Box \blacksquare \rho \end{bmatrix} = \bigcap_{n=0}^{\infty} S^{-n} \llbracket \blacksquare \rho \end{bmatrix} = \bigcap_{n=0}^{\infty} S^{-n} (\llbracket \rho \rrbracket^{\circ})$ continuity $\subset \bigcap_{n=0}^{\infty} (S^{-n} \llbracket \rho \rrbracket)^{\circ}$ Aleksandroffness $\subset (\bigcap_{n=0}^{\infty} S^{-n} \llbracket \rho \rrbracket)^{\circ} = \llbracket \Box \rho \rrbracket^{\circ} = \llbracket \blacksquare \Box \rho \rrbracket$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

$$X = \mathbb{R} \qquad \qquad \triangleright S(x) = 2x \\ \mathbb{p} = (-\infty, 1]$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

DTL is Kripke-incomplete, but many techniques from modal logic are based on these semantics.

DTL is Kripke-incomplete, but many techniques from modal logic are based on these semantics.

Question: Can we still use Kripke semantics to understand DTL over arbitrary spaces?

(ロ) (同) (三) (三) (三) (○) (○)

DTL is Kripke-incomplete, but many techniques from modal logic are based on these semantics.

Question: Can we still use Kripke semantics to understand DTL over arbitrary spaces?

Answer: Yes we can, as long as we weaken the functionality conditions on *S*.

(ロ) (同) (三) (三) (三) (○) (○)

DTL is Kripke-incomplete, but many techniques from modal logic are based on these semantics.

Question: Can we still use Kripke semantics to understand DTL over arbitrary spaces?

Answer: Yes we can, as long as we weaken the functionality conditions on *S*.

In the sequel we discuss non-deterministic quasimodels and their applications to DTL.

A pair of sets of formulas $\Phi = (\Phi^+, \Phi^-)$ satisfying natural coherence conditions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A pair of sets of formulas $\Phi = (\Phi^+, \Phi^-)$ satisfying natural coherence conditions

 $(\boldsymbol{p}\wedge\boldsymbol{q}$;)

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

A pair of sets of formulas $\Phi = (\Phi^+, \Phi^-)$ satisfying natural coherence conditions

 $(\boldsymbol{p} \wedge \boldsymbol{q}, \boldsymbol{p}, \boldsymbol{q};)$

(ロ) (型) (主) (主) (三) の(で)

A pair of sets of formulas $\Phi = (\Phi^+, \Phi^-)$ satisfying natural coherence conditions

 $(p \land q, p, q; \blacklozenge r)$

A pair of sets of formulas $\Phi = (\Phi^+, \Phi^-)$ satisfying natural coherence conditions

 $(p \land q, p, q; \blacklozenge r, r)$

Triple (W, \preccurlyeq, ℓ) where ℓ assigns a type to each $w \in W$ according to the Kripke semantics

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Triple (W, \preccurlyeq, ℓ) where ℓ assigns a type to each $w \in W$ according to the Kripke semantics

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Triple (W, \preccurlyeq, ℓ) where ℓ assigns a type to each $w \in W$ according to the Kripke semantics

Triple (W, \preccurlyeq, ℓ) where ℓ assigns a type to each $w \in W$ according to the Kripke semantics

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Triple (W, \preccurlyeq, ℓ) where ℓ assigns a type to each $w \in W$ according to the Kripke semantics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tuple $(W, \preccurlyeq, S, \ell)$ consisting of a locally finite labelled preorder with a forward-confluent relation *S* satisfying semantic conditions of the successor relation

(ロ) (同) (三) (三) (三) (○) (○)

Tuple $(W, \preccurlyeq, S, \ell)$ consisting of a locally finite labelled preorder with a forward-confluent relation *S* satisfying semantic conditions of the successor relation

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Tuple $(W, \preccurlyeq, S, \ell)$ consisting of a locally finite labelled preorder with a forward-confluent relation *S* satisfying semantic conditions of the successor relation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Tuple $(W, \preccurlyeq, S, \ell)$ consisting of a locally finite labelled preorder with a forward-confluent relation *S* satisfying semantic conditions of the successor relation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Tuple $(W, \preccurlyeq, S, \ell)$ consisting of a locally finite labelled preorder with a forward-confluent relation *S* satisfying semantic conditions of the successor relation

Tuple $(W, \preccurlyeq, S, \ell)$ consisting of a locally finite labelled preorder with a forward-confluent relation *S* satisfying semantic conditions of the successor relation

Weak quasimodel (W, \preccurlyeq, S, ℓ) such that S is ω -sensible

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

Weak quasimodel (W, \preccurlyeq, S, ℓ) such that S is ω -sensible

If $w \in W$ and $\Diamond \varphi \in \ell(w)$, there are $n \in \mathbb{N}$ and $v \in W$ such that $w S^n v$ and $\varphi \in \ell(v)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Weak quasimodel (W, \preccurlyeq, S, ℓ) such that S is ω -sensible

If $w \in W$ and $\Diamond \varphi \in \ell(w)$, there are $n \in \mathbb{N}$ and $v \in W$ such that $w S^n v$ and $\varphi \in \ell(v)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

 $\bigcirc \varphi$

Weak quasimodel (W, \preccurlyeq, S, ℓ) such that S is ω -sensible

If $w \in W$ and $\Diamond \varphi \in \ell(w)$, there are $n \in \mathbb{N}$ and $v \in W$ such that $w S^n v$ and $\varphi \in \ell(v)$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A quasimodel falsifying $\Box \blacksquare p \rightarrow \blacksquare \Box p$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

From dynamical systems to quasimodels

Theorem

A formula $\varphi \in \mathcal{L}_{\blacksquare \circ \Box}$ is valid over the class of dynamical systems iff it is valid over the class of quasimodels

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

From dynamical systems to quasimodels

Theorem

A formula $\varphi \in \mathcal{L}_{\blacksquare \circ \Box}$ is valid over the class of dynamical systems iff it is valid over the class of quasimodels

Proof.

 (\Rightarrow) Define a natural topology and transition function on the set of realizing paths

(ロ) (同) (三) (三) (三) (○) (○)

From dynamical systems to quasimodels

Theorem

A formula $\varphi \in \mathcal{L}_{\blacksquare \circ \Box}$ is valid over the class of dynamical systems iff it is valid over the class of quasimodels

Proof.

 (\Rightarrow) Define a natural topology and transition function on the set of realizing paths

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの
Theorem

A formula $\varphi \in \mathcal{L}_{\blacksquare \circ \Box}$ is valid over the class of dynamical systems iff it is valid over the class of quasimodels

Proof.

 (\Rightarrow) Define a natural topology and transition function on the set of realizing paths

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

A formula $\varphi \in \mathcal{L}_{\blacksquare \circ \Box}$ is valid over the class of dynamical systems iff it is valid over the class of quasimodels

Proof.

 (\Rightarrow) Define a natural topology and transition function on the set of realizing paths

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Theorem

A formula $\varphi \in \mathcal{L}_{\blacksquare \circ \Box}$ is valid over the class of dynamical systems iff it is valid over the class of quasimodels

Proof.

 (\Rightarrow) Define a natural topology and transition function on the set of realizing paths

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 (\Leftarrow) Fix a finite set of formulas Σ closed under subformulas

Theorem

A formula $\varphi \in \mathcal{L}_{\blacksquare \circ \Box}$ is valid over the class of dynamical systems iff it is valid over the class of quasimodels

Proof.

 (\Rightarrow) Define a natural topology and transition function on the set of realizing paths

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

 (\Leftarrow) Fix a finite set of formulas Σ closed under subformulas

• Construct an initial, weak quasimodel \mathcal{I}_{Σ}

Theorem

A formula $\varphi \in \mathcal{L}_{\blacksquare \circ \Box}$ is valid over the class of dynamical systems iff it is valid over the class of quasimodels

Proof.

 (\Rightarrow) Define a natural topology and transition function on the set of realizing paths

 (\Leftarrow) Fix a finite set of formulas Σ closed under subformulas

- Construct an initial, weak quasimodel \mathcal{I}_{Σ}
- Prove that if φ ∈ Σ is topologically falsifiable, then it is falsifiable on some quasimodel Q ≤ I_Σ

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We define $\mathcal{I}_{\Sigma} = (\mathit{I}_{\Sigma}, \succcurlyeq, \mathit{R}, \ell)$ by

 \triangleright I_{Σ} is the set of all finite, rooted, tree-like labeled preorders

We define $\mathcal{I}_{\Sigma} = (\mathit{I}_{\Sigma}, \succcurlyeq, \mathit{R}, \ell)$ by

► I_{Σ} is the set of all finite, rooted, tree-like labeled preorders

▶ $v \prec w$ if v is an open substructure of w

We define $\mathcal{I}_{\Sigma} = (\mathit{I}_{\Sigma}, \succcurlyeq, \mathit{R}, \ell)$ by

 \blacktriangleright I_{Σ} is the set of all finite, rooted, tree-like labeled preorders

• $v \preccurlyeq w$ if v is an open substructure of w

v R w if there is a sensible, root-preserving relation between v and w

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

We define $\mathcal{I}_{\Sigma} = (I_{\Sigma}, \succcurlyeq, R, \ell)$ by

 \blacktriangleright I_{Σ} is the set of all finite, rooted, tree-like labeled preorders

• $v \preccurlyeq w$ if v is an open substructure of w

v R w if there is a sensible, root-preserving relation between v and w

Fact: \mathcal{I}_{Σ} is a weak quasimodel, but not necessarily a quasimodel.

Quasimodels by simulation

A simulation *E* between a weak quasimodel $Q = (W, \preccurlyeq, R, \ell)$ and a dynamic topological model $\mathcal{M} = (X, S, \llbracket \cdot \rrbracket)$ is a binary relation

$$E \subset W \times X$$

such that

- 1. *E* preserves types
- 2. *E* is continuous (preimages of opens are open)
- 3. *E* is dynamic if the following diagram can always be completed

・ロト・個ト・モト・モト ヨー のへで

The maximal simulation

Let $Q = (W, \preccurlyeq, R, \ell)$ be a weak quasimodel, $\mathcal{M} = (X, S, \llbracket \cdot \rrbracket)$ a dynamic topological model.

Lemma

If $E \subseteq W \times X$ is a dynamic simulation, then the domain of E is a quasimodel.

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The maximal simulation

Let $Q = (W, \preccurlyeq, R, \ell)$ be a weak quasimodel, $\mathcal{M} = (X, S, [\![\cdot]\!])$ a dynamic topological model.

Lemma

If $E \subseteq W \times X$ is a dynamic simulation, then the domain of E is a quasimodel.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Proposition

Let $E^* \subseteq I_{\Sigma} \times X$ be the maximal simulation. Then, E^* is a surjective, dynamic simulation.

The maximal simulation

Let $Q = (W, \preccurlyeq, R, \ell)$ be a weak quasimodel, $\mathcal{M} = (X, S, [\![\cdot]\!])$ a dynamic topological model.

Lemma

If $E \subseteq W \times X$ is a dynamic simulation, then the domain of E is a quasimodel.

Proposition

Let $E^* \subseteq I_{\Sigma} \times X$ be the maximal simulation. Then, E^* is a surjective, dynamic simulation.

So, any topologically satisfiable formula is satisfiable on a quasimodel.

Theorem (DFD, 2008) DTL *is computably enumerable.*

Theorem (DFD, 2008) DTL *is computably enumerable.*

Theorem (DFD, 2011)

Any satisfiable formula may be satisfied over the rational line.

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Theorem (DFD, 2008) DTL *is computably enumerable.*

Theorem (DFD, 2011)

Any satisfiable formula may be satisfied over the rational line.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (DFD, 2011)

Theorem (DFD, 2008) DTL *is computably enumerable.*

Theorem (DFD, 2011)

Any satisfiable formula may be satisfied over the rational line.

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

Theorem (DFD, 2011)

• Equal to
$$DTL + \exists \blacksquare p \rightarrow \forall \Diamond p$$
.

Theorem (DFD, 2008) DTL *is computably enumerable.*

Theorem (DFD, 2011)

Any satisfiable formula may be satisfied over the rational line.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (DFD, 2011)

- Equal to $DTL + \exists \blacksquare p \rightarrow \forall \Diamond p$.
- Decidable, but not in primitive recursive time.

Theorem (DFD, 2008) DTL *is computably enumerable.*

Theorem (DFD, 2011)

Any satisfiable formula may be satisfied over the rational line.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (DFD, 2011)

- Equal to $DTL + \exists \blacksquare p \rightarrow \forall \Diamond p$.
- Decidable, but not in primitive recursive time.
- No locally finite model property.

Theorem (DFD, 2008) DTL *is computably enumerable.*

Theorem (DFD, 2011)

Any satisfiable formula may be satisfied over the rational line.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Theorem (DFD, 2011)

- Equal to $DTL + \exists \blacksquare p \rightarrow \forall \Diamond p$.
- Decidable, but not in primitive recursive time.
- No locally finite model property.
- Finite quasimodel property.

We will:

1. Extend the language of DTL to include the tangled closure, allowing us to obtain a natural axiomatization.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへぐ

We will:

1. Extend the language of DTL to include the tangled closure, allowing us to obtain a natural axiomatization.

(ロ) (同) (三) (三) (三) (○) (○)

2. Sketch the proof of completeness using our initial quasimodel and Kruskal's tree theorem.

We will:

- 1. Extend the language of DTL to include the tangled closure, allowing us to obtain a natural axiomatization.
- 2. Sketch the proof of completeness using our initial quasimodel and Kruskal's tree theorem.
- 3. Consider an intuitionistic fragment of DTL which gives rise to Intuitionistic Temporal Logic (ITL).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

We will:

- 1. Extend the language of DTL to include the tangled closure, allowing us to obtain a natural axiomatization.
- 2. Sketch the proof of completeness using our initial quasimodel and Kruskal's tree theorem.
- 3. Consider an intuitionistic fragment of DTL which gives rise to Intuitionistic Temporal Logic (ITL).

・ロト ・ 同 ・ ・ ヨ ・ ・ ヨ ・ うへつ

4. Sketch a decidability proof of ITL with 'eventually'.

We will:

- 1. Extend the language of DTL to include the tangled closure, allowing us to obtain a natural axiomatization.
- 2. Sketch the proof of completeness using our initial quasimodel and Kruskal's tree theorem.
- 3. Consider an intuitionistic fragment of DTL which gives rise to Intuitionistic Temporal Logic (ITL).
- 4. Sketch a decidability proof of ITL with 'eventually'.

Thank you for your attention!

(ロ) (同) (三) (三) (三) (○) (○)

Bibliography

► S. Artemov, J. Davoren and A. Nerode 1997, *Modal logics and topological semantics for Hybrid Systems,* Technical Report MSI 97-05, Cornell University.

▶ DFD 2005, *Dynamic topological completeness for* \mathbb{R}^2 , JIGPAL 15, 77-107.

▶ DFD 2009, Non-deterministic semantics for dynamic topological logic, APAL 157, 110-121.

▶ B. Konev, R. Kontchakov, F. Wolter and M. Zakharyaschev 2006, *On dynamic topological and metric logics,* Studia Logica 84, 129-160.

▶ B. Konev, R. Kontchakov, F. Wolter and M. Zakharyaschev 2006, *Dynamic topological logics over spaces with continuous functions,* AiML vol.6, 299-318.

▶ P. Kremer and G. Mints 2005, *Dynamic topological logic,* APAL 131, 133-158.

► S. Slavnov 2005, On completeness of dynamic topological logic, Moscow Mathematical Journal 5, 477-492.