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Topological dynamics

Dynamical systems are abstract models of change over time
and occur in many branches of mathematics and natural
science.

Formally, a dynamical (topological) system is a pair (X ,S)
where X is a topological space and S : X → X is continuous.

We think of X as representing space and S as representing the
passage of time.

A point x ∈ X ‘moves’ along its orbit

x ,S(x),S2(x), . . . ,Sn(x), . . .
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Dynamical topological systems

Recall:
A topological space is a pair (X , T ) where T ⊆ 2X satisfies

1. ∅,X ∈ T

2. T is closed under finite intersections

3. T is closed under arbitrary unions

Example
The real line R is equipped with its standard topology where
U ⊆ R is open iff

∀x ∈ U∃ε > 0∀y ∈ R
(
|x − y | < ε⇒ y ∈ U

)
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More Examples of Topological Spaces

I The rational numbers, Q, are similarly equipped with the
interval topology.

I For any n, Rn has a standard topology generated by open
balls

Bε(x) = {y ∈ Rn : d(x , y) < ε}

I If (W ,4) is a partially ordered set, then W can be endowed
with the down-set topology by letting U ⊂W be open if

∀w < v
(
w ∈ U ⇒ v ∈ U

)
.

The up-set topology is defined dually.
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Continuous functions
S : R→ R is continuous if

∀x ∈ R∀ε > 0∃δ > 0
(
d(x , y) < δ ⇒ d(S(x),S(y)) < ε

)

More generally, S : X → Y is continuous if U ⊂ Y is open⇒
S−1(U) is open.

If moreover S(U) is open whenever U is open we say S is an
interior map.

Examples

I S : R→ R is continuous whenever S is a polynomial.

I If (W ,4) is a preorder then S : W →W is continuous iff
increasing:

∀v ,w
(
w 4 v ⇒ S(w) 4 S(v)

)
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Topological recurrence

I A dynamical system (X ,S) is probability preserving if for
all open A ⊂ X , |A| = |S−1(A)|, where |A| denotes
probability (or volume).

I A dynamical system (X ,S) is Poincaré recurrent (for our
purposes) if whenever A is non-empty and open there are
x ∈ A and n > 0 such that Sn(x) ∈ A.

Theorem (Poincaré)
Every probability-preserving system is Poincaré recurrent.

I A dynamical system (X ,S) is minimal if whenever A is
non-empty and open and x ∈ X , there is n > 0 such that
Sn(x) ∈ A.
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Every probability-preserving system is Poincaré recurrent.
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A Minimal System

•

S(x)
•

x√
2π



A Probability-Preserving System

•

S(x) •

xϑ



S4C

Language (L�◦):

p | ¬ϕ | ϕ ∧ ψ | �ϕ | ◦ϕ

Models: (X ,S, J·K) consisting of a dynamical system equipped
with a valuation J·K : L�◦ → 2X such that

I J·K commutes with Booleans.

I J�ϕK = JϕK◦ (interior)

I J◦ϕK = S−1 JϕK (next)

Introduced by Artemov, Davoren and Nerode (1997).
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Axiomatization for S4C

Taut All propositional tautologies.

Axioms for �:
K �(p → q)→ (�p → �q)
T �p → p
4 �p → ��p

Temporal axioms:
Neg◦ ¬◦p ↔ ◦¬p
And◦ ◦(p ∧ q)↔ ◦p ∧ ◦q

Cont ◦�p → �◦p.

Rules:
MP Modus ponens
Subs Substitution
N� Necessitation for � = �, ◦
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Positive results on S4C
1997 Artemov, Davoren and Nerode proved that

I S4C is Kripke-complete.

Proof idea: The canonical model satisfies all
frame conditions.

I it has the finite model property
Beware: Filtration does not preserve the
monotonicity condition on S, so other
techniques are needed.

2005 Kremer and Mints showed that the above results
also hold for S4H, the variant of S4C where f is a
homeomorphism (equivalently, an interior map).

2005 Slavnov showed that S4C is complete for
interpretations on {Rn}n<ω.

2006 DFD showed that S4C is complete for
interpretations on R2.
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Dynamic Topological Logic

Language (L�◦�):

p | ¬ϕ | ϕ ∧ ψ | �ϕ | ◦ϕ | �ϕ

Semantics:
I J�ϕK =

⋂
n<ω S−n JϕK (henceforth).

I Equivalently, x satisfies �ϕ if ϕ holds on every point of the
orbit of x :

{x ,S(x),S(S(x)), . . .}.

I Its dual is ♦ := ¬�¬ (eventually).

Introduced by Kremer and Mints (2005).
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Kremer and Mints axioms

Kremer and Mints proposed the axiomatization KM of DTL
given by

KM = S4C + Fix� + Ind� + N�

where
Fix� �p → p ∧ ◦�p
Ind� �(p → ◦p)→ (p → �p)

I This is the natural axiomatization obtained by combining
S4C with Linear Temporal Logic (LTL).

I Kremer and Mints left the question of completeness open.



Kremer and Mints axioms

Kremer and Mints proposed the axiomatization KM of DTL
given by

KM = S4C + Fix� + Ind� + N�

where
Fix� �p → p ∧ ◦�p
Ind� �(p → ◦p)→ (p → �p)

I This is the natural axiomatization obtained by combining
S4C with Linear Temporal Logic (LTL).

I Kremer and Mints left the question of completeness open.



Kremer and Mints axioms

Kremer and Mints proposed the axiomatization KM of DTL
given by

KM = S4C + Fix� + Ind� + N�

where
Fix� �p → p ∧ ◦�p
Ind� �(p → ◦p)→ (p → �p)

I This is the natural axiomatization obtained by combining
S4C with Linear Temporal Logic (LTL).

I Kremer and Mints left the question of completeness open.



Expressivity
I Recall that a dynamical system (X ,S) is Poincaré

recurrent if whenever A ⊆ X is open and non-empty, there
are x ∈ A and n > 0 such that Sn(x) ∈ A.

This is equivalent to the validity of

�ϕ→ �◦♦ϕ

I Recall that (X ,S) is minimal if for all x ∈ X and non-empty,
open A ⊆ X there is n > 0 such that Sn(x) ∈ A.

This is equivalent to the validity of

∃�ϕ→ ∀♦ϕ

Here, ∀ and ∃ are the universal modalities.



Expressivity
I Recall that a dynamical system (X ,S) is Poincaré
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Negative results

2005 Kremer and Mints showed that DTL cannot have
the finite model property or even the locally finite
model property.

2006 Konev, Kontchakov, Wolter and Zakaryashev
proved that
I DTL is undecidable

I DTLH, where f is restricted to be a
homeomorphism/interior map, is
non-axiomatizable

2014 DFD showed that DTL is not finitely axiomatizable,
hence KM is incomplete.
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The Post Correspondence Problem

Fix a sequence of pairs

P =
(
(v0,u0), . . . , (vk ,uk )

)
with

v i = bi
0 . . . b

i
`i

ui = c i
0 . . . c

i
ri

words over some alphabet A.

Problem (PCP): Does there exist a sequence i1, . . . , iN with

v i1 ∗ . . . ∗ v iN = ui1 ∗ . . . ∗ uiN ?
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A Solvable PCP

v0 = ab u0 = a
v1 = d u1 = cd
v2 = c u2 = b

Then,

v0 ∗ v2 ∗ v1 =u0 ∗ u2 ∗ u1

=abcd

Theorem (Post)
The set of PCP instances without a solution is not computably
enumerable.
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Embedding the PCP in DTL

Goal: For an alphabet A and a PCP instance P, define ϕA,P so
that P has a solution iff ϕA,P is satisfiable over the class of
dynamical systems with an interior map.

Some useful abbreviations:
I �stripeϕ :=(
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)
∧
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Defining ϕA,P

We will define

ϕA,P := ϕeq ∧ ϕstripe ∧ ϕleft ∧ ϕright

I ϕeq := ♦
(
end ∧

∧
a∈A�(lefta ↔ righta)

)

I ϕpair := �
(∧

i≤k pairi ∧
∧

i≤j ¬(pairi ∧ pairj)
)

I ϕstripe := �<end�(stripe↔ ◦stripe)
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Defining ϕleft

ϕleft is the conjunction of the following:
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The formula ϕright is defined similarly, replacing left by right , etc.
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Satisfying ϕA,P on a dynamical system

lefta righta

leftb

lefta righta
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leftb rightb

leftc rightc

leftd rightd

The set of worlds W

The relation 4The function SThe valuation of end for ♦endThe valuation of stripe for �<end�(stripe↔ ◦stripe)The coding of v0 and u0The coding of v0 ∗ v1 and u0 ∗ u1The coding of v0 ∗ v1 ∗ v2 and u0 ∗ u1 ∗ u2The formula ϕeq := ♦
(
end ∧

∧
a∈A�(lefta ↔ righta)

)
is satisfied!
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The PCP and interior maps

Lemma
The following are equivalent:

1. The PCP instance (A,P) is solvable.

2. ϕA,P is satisfiable on a dynamical system with an interior
map.

3. ϕA,P is satisfiable on a Kripke model with an interior map.

Proof.
(1⇒ 3): By the construction we have seen.
(1⇒ 2): Kripke models are a special case of topological
models.
Other implications require some care.

Beware: Topologically satisfiable formulas are not always
Kripke-satisfiable.
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Non-axiomatizability and undecidability

Theorem
The set of L�◦� formulas valid over the class of spaces with an
interior map is not computably enumerable.

Theorem
The set of L�◦� formulas valid over the class of all dynamical
systems is undecidable.

The proof proceeds by a similar (but more involved) reduction
of a reachability problem for lossy channel systems.
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A space X is Aleksandroff iff the topology is the up-set topology
generated by some partial order 4.

Proof.
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upwards-closed under 4. It is not hard to check that such sets
are closed under arbitrary intersections.
(⇒) If X is Alexandroff, define x 4 y if
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Rescuing Kripke semantics

DTL is Kripke-incomplete, but many techniques from modal
logic are based on these semantics.

Question: Can we still use Kripke semantics to understand
DTL over arbitrary spaces?

Answer: Yes we can, as long as we weaken the functionality
conditions on S.

In the sequel we discuss non-deterministic quasimodels and
their applications to DTL.
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Definition: Labelled preorder

Triple (W ,4, `) where ` assigns a type to each w ∈W
according to the Kripke semantics
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Definition: Weak quasimodel

Tuple (W ,4,S, `) consisting of a locally finite labelled preorder
with a forward-confluent relation S satisfying semantic
conditions of the successor relation
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If w ∈W and ♦ϕ ∈ `(w), there are n ∈ N and v ∈W such that
w Sn v and ϕ ∈ `(v).
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A quasimodel falsifying ��p → ��p
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From dynamical systems to quasimodels

Theorem
A formula ϕ ∈ L�◦� is valid over the class of dynamical
systems iff it is valid over the class of quasimodels

Proof.
(⇒) Define a natural topology and transition function on the set
of realizing paths

. . .

♦ψ ψ

(⇐) Fix a finite set of formulas Σ closed under subformulas

Construct an initial weak quasimodel IΣ

Prove that if ϕ is falsifiable, then it is falsifiable on some
quasimodel Q ≤ IΣ �
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The initial weak quasimodel

We define IΣ = (IΣ,<,R, `) by

I IΣ is the set of all finite, rooted, tree-like labeled preorders

I v 4 w if v is an open substructure of w

I v R w if there is a sensible, root-preserving relation
between v and w

Fact: IΣ is a weak quasimodel, but not necessarily a
quasimodel.
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Quasimodels by simulation

A simulation E between a weak quasimodel Q = (W ,4,R, `)
and a dynamic topological modelM = (X ,S, J·K) is a binary
relation

E ⊂W × X

such that
1. E preserves types
2. E is continuous (preimages of opens are open)
3. E is dynamic if the following diagram can always be

completed

x
S

y

w R

E

v

E



The maximal simulation

Let Q = (W ,4,R, `) be a weak quasimodel,M = (X ,S, J·K) a
dynamic topological model.

Lemma
If E ⊆W × X is a dynamic simulation, then the domain of E is
a quasimodel.

Proposition
Let E∗ ⊆ IΣ × X be the maximal simulation.
Then, E∗ is a surjective, dynamic simulation.

So, any topologically satisfiable formula is satisfiable on a
quasimodel.
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Positive results using quasimodels

Theorem (DFD, 2008)
DTL is computably enumerable.

Theorem (DFD, 2011)
Any satisfiable formula may be satisfied over the rational line.

Theorem (DFD, 2011)
IfM is the class of minimal systems, DTL(M) is:
I Equal to DTL + ∃�p → ∀♦p.
I Decidable, but not in primitive recursive time.
I No locally finite model property.
I Finite quasimodel property.
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Next time

We will:

1. Extend the language of DTL to include the tangled closure,
allowing us to obtain a natural axiomatization.

2. Sketch the proof of completeness using our initial
quasimodel and Kruskal’s tree theorem.

3. Consider an intuitionistic fragment of DTL which gives rise
to Intuitionistic Temporal Logic (ITL).

4. Sketch a decidability proof of ITL with ‘eventually’.
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