IPM

                                پژوهشگاه دانش‌های بنیادی
پژوهشکدهٔ ریاضیات


Mathematical Logic Weekly Seminar سمینار هفتگی منطق ریاضی




TITLE  
Universal Theories and Compactly Expandable Models


SPEAKER  
Enrique Casanovas  
Universitat de Barcelona, Spain  
 


TIME  
Wednesday, December 16, 2020,   16:30 - 18:30


VENUE   (Online)



SUMMARY

 

Let $M$ be structure of cardinality $\kappa$ with language $\tau(M)\leq\kappa$. We say that is \textit{compactly expandable} if for every theory $T$ of language $\tau(T)$ with $\tau(M)\subseteq \tau(T)$ and $|T|\leq\kappa$ can be realised in an expansion of $M$, whenever every finite subset of $T$ can be realised in an expansion of $M$. We say that $M$ is \textit{expandable} if the requirement of finite satisfiability can be weakened to: $T$ is consistent with the complete theory Th$(M)$ of $M$. Clearly, expandable models are compactly expandable. The existence of a compactly expandable model which is not expandable was conjectured in \cite{95} and has been recently proved in \cite{19} using the notion of universal theory and the logic of the quantifier of cofinality $\omega$. We plan to present these results.
References
[1] E. Casanovas. Compactly expandable models and stability. The Journal of Symbolic Logic, 60:673–683, 1995.
[2] E. Casanovas and S. Shelah. Universal theories and compactly expandable models. The Journal of Symbolic Logic, 84:1215–1223, 2019.
To join this webinar, please send an email to r.zoghi@gmail.com.

 




تهران، ضلع‌ جنوبی ميدان شهيد باهنر (نياوران)، پژوهشگاه دانش‌های بنيادی، پژوهشکده رياضيات
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Niavaran Bldg., Niavaran Square, Tehran
ipmmath@ipm.ir   ♦   +98 21 22290928   ♦  math.ipm.ir