IPM

                                پژوهشگاه دانش‌های بنیادی
پژوهشکدهٔ ریاضیات


Mathematical Logic Weekly Seminar سمینار هفتگی منطق ریاضی




TITLE  
The Herwig--Lascar Property of Groups, Ultraextensive Structures and Vershik's Conjecture


SPEAKER  
Mahmood Etedadi Aliabadi  
University of North Texas, USA  
 


TIME  
Wednesday, December 23, 2020,   16:00 - 18:00


VENUE   Lecture Hall 1, Niavaran Bldg.



SUMMARY

 

We study a notion of HL-extension (HL standing for Herwig--Lascar) for a structure in a finite relational language $\mathcal{L}$. We give a description of all finite minimal HL-extensions of a given finite $\mathcal{L}$-structure. In addition, we study a group-theoretic property considered by Herwig--Lascar and show that it is closed under taking free products. We also introduce notions of coherent extensions and ultraextensive $\mathcal{L}$-structures and show that every countable $\mathcal{L}$-structure can be extended to a countable ultraextensive structure. Finally, we introduce a notion of omnigenous group and verify a conjecture of Vershik by showing that every omnigenous group (in particular, Hall's universal countable locally finite group) can be embedded as a dense subgroup in the isometry group of the Urysohn space and in the automorphism group of the random graph. In fact, we show the same for all automorphism groups of known infinite ultraextensive spaces.
This is a joint work with Su Gao, Fran�ois Le Ma�tre and Julien Melleray.
To join this webinar, please send an email to r.zoghi@gmail.com.

 




تهران، ضلع‌ جنوبی ميدان شهيد باهنر (نياوران)، پژوهشگاه دانش‌های بنيادی، پژوهشکده رياضيات
School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Niavaran Bldg., Niavaran Square, Tehran
ipmmath@ipm.ir   ♦   +98 21 22290928   ♦  math.ipm.ir