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Any stochastic map T is a contraction under Lp-norms, namely ‖Tf‖p ≤ ‖f‖p for any
1 ≤ p ≤ ∞ and arbitrary f . This is a simple consequence of the convexity of x 7→ xp.
Some stochastic maps satisfy stronger inequalities of the form

‖Tf‖p ≤ ‖f‖q, ∀f, (1)

for some 1 ≤ q < p ≤ ∞. This is a stronger inequality since q 7→ ‖f‖q is a non-decreasing
function. Thus (1) is stronger than the contraction of T , so is called a hypercontractivity
inequality. Proving hypercontractivity inequalities is usually a challenge, yet when T
belongs to a continuous semigroup of stochastic maps, hypercontractivity inequalities
can be derived from another type of inequalities called logarithmic Sobolev inequalities.

Hypercontractivity and logarithmic Sobolev inequalities have found several applica-
tions and connections to other areas of mathematics such as concentration of measure
inequalities, transportation cost inequalities, isoperimetric inequalities, bounding the
mixing times and analysis of boolean functions. In this manuscript we introduce the
notations of hypercontractivity and logarithmic Sobolev inequalities and survey some of
their applications and connections to other fields.
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1 Markov Semigroups

Let (Ω,Σ, π) be a probability space. To avoid some technicalities for now we assume that
Ω is a finite set and π has full support. Let L2(π) = {f : Ω → R} be the space of real
functions on Ω equipped with the inner product

〈f, g〉π = E[fg], (2)

where the expectation is with respect to π. This inner product induces the norm

‖f‖2 = (Ef 2)1/2.

By abuse of notation here a real number c ∈ R is also considered as an element of L2(π)
(the constant function). In particular 1 is the constant 1 function.

The variance of a function f is equal to

Varf = E[f 2]− E[f ]2.

A collection {Tt : t ≥ 0} of maps Tt : L2(Ω)→ L2(Ω) is called a Markov semigroup if
it satisfies:

(a) Semigroup: T0 = I (the identity map) and ∀t, s ≥ 0 we have

TsTt = Ts+t,

(b) Continuous: t 7→ Tt is continuous in the following sense: for all functions f and all
x ∈ Ω we have

lim
t→0+

Ttf(x) = f(x),

(c) Stochastic: Tt for all t ≥ 0 is a stochastic map, i.e.,

(normalization) Tt1 = 1

(positivity) Ttf ≥ 0 ∀f ≥ 0,

where f ≥ 0 means that f(x) ≥ 0 for all x ∈ Ω.

Observe that by the normalization condition 1 is a common eigenvalues of Tt’s. Using
the positivity condition, it can be shown that 1 is indeed the largest eigenvalues of Tt’s.
Thus these operators are uniformly bounded.

The way we define a stochastic map Tt, it acts on the space of functions. Then its
transpose denoted by T ∗ acts on the space of probability distributions. In other words,
for any probability distribution µ, which can be thought of as a row vector,

τ = µTt,

is again a probability distribution. Indeed, τ = µTt is coordinate-wise non-negative since
by the positivity condition τf = µ(Ttf) ≥ 0 for all f ≥ 0, and is normalized because
τ1 = µ(Tt1) = µ1 = 1.
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Lindblad operator: The Lindblad operator (or generator) associate to a Markov semi-
group {Tt : t ≥ 0} is defined by

L := − lim
t→0+

1

t
(Tt − I).

Here we prove that this limit exists. By the continuity of t 7→ Tt for sufficiently small
ε > 0 we have ∥∥∥I − 1

ε

∫ ε

0

Tsds
∥∥∥ < 1,

where ‖ · ‖ denotes the operator norm. Then ε−1
∫ ε

0
Tsds, and then

∫ ε
0
Tsds are invertible.

Now for 0 < t < ε we have

1

t
(Tt − I)

∫ ε

0

Tsds =
1

t

(∫ ε

0

Ts+tds−
∫ ε

0

Tsds
)

=
1

t

(∫ t+ε

t

Tsds−
∫ ε

0

Tsds
)

=
1

t

(∫ t+ε

ε

Tsds−
∫ t

0

Tsds
)
.

Multiplying both sides from right by the inverse of
∫ ε

0
Tsds we find that

1

t
(Tt − I) =

1

t

(∫ t+ε

ε

Tsds−
∫ t

0

Tsds
)
·
(∫ ε

0

Tsds
)−1

.

Then taking the limit by continuity we get

lim
t→0+

1

t
(Tt − I) = (Tε − I)

(∫ ε

0

Tsds
)−1

.

As a result the limit exists and we have

L = −(Tε − I)
(∫ ε

0

Tsds
)−1

.

�

Indeed using the semigroup property of Tt’s we have

d

dt
Tt = −LTt = −TtL.

and then,
Tt = e−tL.

From our assumption that Tt1 = 1 we immediately find that

L1 = 0.
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Reversibility: Throughout this manuscript we assume that L is self-adjoint as an
operator acting on L2(π). That is, for all f, g we have

〈f,Lg〉π = 〈Lf, g〉π,

where the inner product is defined in (2). The fact hat L is self-adjoint essentially means
that the semigroup is reversible (or satisfies the detailed balance condition).

If the Markov semigroup is reversible, then π is a stationary distribution of Tt for all
t ≥ 0. To see this, note that if L is self-adjoint, then Tt = e−tL is self-adjoint, i.e.,

〈f, Ttg〉π = 〈Ttf, g〉π.

Now letting f, g be the characteristic functions of the sets {x}, {y} for some x, y ∈ Ω, we
find that

π(x)Tt(x, y) = π(y)Tt(y, x). (3)

Now we have
πTt(y) =

∑
x

π(x)Tt(x, y) =
∑
x

π(y)Tt(y, x) = π(y),

where in the last equation we use Tt1 = 1. Then πTt = π and π is the stationary
distribution of Tt.

Since L and Tt are self-adjoint, Tt does not change the average with respect to π:

E[Ttf ] = 〈1, Ttf〉π = 〈Tt1, f〉π = 〈1, f〉π = Ef.

We similarly have E[Lf ] = 0 for all f .

Assume that µ is another probability distribution and let f = µ/π. Also let τ = µTt
and g = τ/π. Then we have

g(x) =
τ(x)

π(x)

=
∑
y

µ(y)Tt(y, x)

π(x)

=
∑
y

µ(y)Tt(x, y)

π(y)

= Ttf(x),

where in the third line we use the reversibility condition (3). In summary, for reversible
Markov semigroups we have

µTt
π

= Tt

(µ
π

)
. (4)
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Dirichlet form: The Dirichlet form associate with the semigroup is defined by

E(f, g) := 〈f,Lg〉π = E[fLg] = − d

dt
〈f, Ttg〉π

∣∣∣
t=0
.

We claim that the Dirichlet form is positive, namely E(f, f) ≥ 0 for all f . Equivalently,
as L is self-adjoint, L is positive semidefinite. To prove this, let r < 0, and define

T̂t = et(rI−L) = ertTt.

We then have
d

dt
T̂t = (rI − L)T̂t,

and

(rI − L)

∫ t

0

T̂sds = T̂t − I.

On the other hand since r < 0 and Tt is bounded, limt→∞ T̂t = 0. Therefore,

(rI − L)

∫ ∞
0

T̂sds = −I.

This means that rI −L in invertible, and then r is not an eigenvalue of L. That is, L is
self-adjoint and all of whose eigenvalues are non-negative, so it is positive semidefinite.

�

Following similar ideas, the following theorem of Hille and Yosida can be proven.

Theorem 1.1. (Hille-Yosida theorem) For any self-adjoint operator L that is the gener-
ator of a Markov semigroup we have

‖(aI + L)−1‖ ≤ 1

a
,

for any a > 0. Equivalently for any vector f and a > 0 we have

a‖f‖2 ≤ ‖(aI + L)f‖2.

The above theorem holds in the infinite dimensional case as well. In the finite dimen-
sional case that we consider here, however, there is a simpler characterization of Lindblad
operators. We claim that L satisfies

(i) L1 = 0,

(ii) off-diagonal entries of L are at most zero.

if and only if {Tt = e−tL : t ≥ 0} form a Markov semigroup. The continuity and
semigroup properties obviously hold from the definition Tt = e−tL. The normalization
condition is also equivalent to (i). It remains to prove that the positivity condition is
equivalent to (ii). For one direction we note that since the off-diagonal entries of T0 = I
are all zero, and the off-diagonal entries of Tt are non-negative, L, as the minus derivative
of Tt at zero, must satisfy (ii). For the other direction, assuming (ii), there is some positive
a > 0 such that all entries of aI − L are non-negative. Then Tt = e−tL = e−atet(aI−L)
is a positive constant times the exponential of a matrix with non-negative entries. This
means that Tt has non-negative entries.
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Spectral gap: We saw that L is positive semidefinite and has a zero eigenvalue since
L1 = 0. Hereafter we assume that 1 is the only 0-eigenvector of L, i.e., the zero eigenvalue
is non-degenerate. This condition is called the primitivity condition.

Having a primitive semigroup, its spectral gap is the smallest non-zero eigenvalue of
L which we denote by λ. Since in this case the function 1 is the sole 0-eigenvalue of L
and the space of functions orthogonal to 1 is {f : Ef = 0} we have

λ = inf
E[f ]=0

E(f, f)

E[f 2]
. (5)

As an exercise it can also be shown that

λ = inf
f 6=0

E(f, f)

Varf
.

Proposition 1.2. For any t ≥ 0 and any function f we have

‖Ttf − Ef‖2 ≤ e−λt‖f − Ef‖2.

Proof. By the definition of the spectral gap for every function f we have

Varf = ‖f − Ef‖2
2 ≤

1

λ
E(f, f).

Such an inequality is called a Poincare inequality. Now we have

d

dt
‖Ttf − Ef‖2

2 =
d

dt
〈Ttf − Ef, Ttf − Ef〉

= −2E(Ttf, Ttf)

≤ −2λ‖Ttf − Ef‖2
2.

Taking the integration this gives the desired inequality.

This proposition says that, assuming that L is primitive and λ > 0, for any f , as
t → ∞, t 7→ Ttf tends to a constant function equal to its expectation. Equivalently,
by (4), for any probability distribution µ, µTt converges to the stationary distribution π.
Moreover, this convergence is exponentially fast.

To summarize, in the rest of this manuscript we assume that L is a Lindblad generator
of a Markov semigroup with elements

Tt = e−tL.

We assume that L1 = 0 (equivalently, Tt satisfies the normalization condition) and Ttf ≥
0 for all f ≥ 0 so that {Tt : t ≥ 0} is a valid Markov semigroup. We further assume that
L satisfies the reversibility or detailed balance condition, namely L is self-adjoint with
respect to the inner product 〈·, ·〉π. We showed that in this case L is positive semidefinite
(although has a 0-eigenvalue) and defined associated Dirichlet form E(·, ·). We further
assume that L is primitive, i.e., the 0-eigenvalue of L is non-degenerate and denote the
spectral gap of L by λ.
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Let us finish this section by giving a simple yet important example. Let L = I − E
where the expectation E is with respect to some fixed distribution π, i.e.,

Lf = f − Ef.

Then we have

Ttf = e−t(I−E)f = e−tetEf = e−t(I + (et − 1)E)f = e−tf + (1− e−t)Ef,

where in computing etE we use the fact that E2 = E is a projection. It is easily verified
that {Tt : t ≥ 0} is a Markov semigroup. Moreover, we have

〈f,Lg〉π = 〈f, g − Eg〉π = E[f(g − Eg)] = E[fg]− E[f ]E[g] = 〈Lf, g〉π.

Thus L is reversible. Observe that

E(f, f) = 〈f,Lf〉π = E[f 2]− E[f ]2 = Varf ≥ 0,

so the Dirichlet form E(·, ·) is positive. Finally, note that E is a rank-one projection. Thus
L = I − E has a single 0-eigenvalue and all of whose other eigenvalues are 1. Therefore,
λ = 1 and L is primitive.

2 Hypercontractivity inequalities

For any p ≥ 1 we define the p-norm by

‖f‖p := (E|f |p)1/p,

which generalized the definition of 2-norm given in the previous section. We emphasis
that here the expectation E is with respect to the fixed probability distribution π. We also
define ‖f‖∞ in limit of p→∞ of ‖f‖p, i.e., we let ‖f‖∞ = maxx |f(x)|. By Minkowski’s
inequality ‖ · ‖p, for p ≥ 1, satisfies triangle’s inequality and indeed is a norm.

For any p define p̂ by

1

p
+

1

p̂
= 1. (6)

p̂ = p/(p − 1) is called the Hölder conjugate of p. Then Hölder’s duality states that for
p ≥ 1 (and then p̂ ≥ 1) we have

‖f‖p = max
g 6=0

〈f, g〉π
‖g‖p̂

,

which in particular says that

|〈f, g〉π| ≤ ‖f‖p · ‖g‖p̂.

Hölder’s inequality for p = 2 is usually called the Cauchy-Schwarz inequality. In general,
Hölder’s inequality can be proven using Young’s inequality.
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Entropy: A crucial property of p-norms is their connection to the entropy function.
For any function f ≥ 0 we define its entropy by

Entπ(f) := E[f log f ]− Ef logEf.

Using the convexity of s 7→ s log s we have Ent(f) ≥ 0 for all f ≥ 0.

The entropy function as defined above is related to the KL-divergence (relative en-
tropy) as follows. For two distributions µ, π their KL-divergence is defined by

D(µ‖π) =
∑
x

µ(x)
(

log µ(x)− π(x)
)
. (7)

Now observe that for the function f = µ/π we have

Entπ(f) = D(µ‖π).

The relevance of the entropy function to hypercontractivity inequalities is due to the
following proposition which can be proven by a simple computation.

Proposition 2.1. For any f ≥ 0 we have

d

dp
‖f‖p =

1

p2
‖f‖1−p

p Entπ(fp).

Note that as a corollary of this proposition and the non-negativity of the entropy
function we find that p 7→ ‖f‖p is non-decreasing:

d

dp
‖f‖p ≥ 0.

Operator norm: For p, q ≥ 1, the q → p norm of Tt is defined by

‖Tt‖q→p := sup
f 6=0

‖Ttf‖p
‖f‖q

.

In other words, ‖Tt‖q→p is the smallest number M such that

‖Ttf‖p ≤M‖f‖q, ∀f.

Note that since the entries of Tt are non-negative, the above maximum is achieved at some
f ≥ 0. For such f using the convexity of s 7→ sq one can easily verify that ‖Ttf‖qq ≤ ‖f‖qq.
Therefore,

‖Tt‖q→q ≤ 1 ∀q ≥ 1.

That is, Tt is a contraction under any q-norm for q ≥ 1.

We say that Tt is hypercontractive if ‖Tt‖q→p ≤ 1, or equivalently

‖Ttf‖p ≤ ‖f‖q,
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for some 1 ≤ q < p. Note that since p 7→ ‖f‖p is non-decreasing as mentioned above,
such an inequality is stronger than the contractivity inequality ‖Tt‖q→q ≤ 1. This is why
such an inequality is called a hypercontractivity inequality.

Hypercontractivity inequalities are usually challenging to prove. However, since here
Tt belongs to a Markov semigroup we may use other tools for proving such inequalities.

Definition 2.2. For an arbitrary q, we say that the Markov semigroup {Tt : t ≥ 0}
satisfies the q-log-Sobolev inequality with constant c > 0 if for all f > 0 we have

cEntπ(f q) ≤ q2

4(q − 1)
E(f q−1, f),

where as before E(f, g) = 〈f,Lg〉π. The log-Sobolev inequality for q = 1 is defined (as
the limit of q → 1+) by

cEntπ(f) ≤ 1

4
E(f, log f).

We denote the best constant c satisfying the above log-Sobolev inequality by αq.

In a log-Sobolev inequality, the entropy function appears in the left hand side, whose
definition involves the logarithm function. This is why it is called a logarithmic Sobolev
inequality. While the left hand side of such an inequality does not depend on the semi-
group, the Dirichlet form appears in the right hand side and depends on the generator of
the Markov semigroup.

Letting f = g1/q and using the definition of Hölder’s conjugate q̂ = q/(q − 1) the
q-log-Sobolev inequality is equivalent to

cEntπ(g) ≤ qq̂

4
E(g1/q̂, g1/q), ∀g > 0. (8)

Also for the q-log-Sobolev constant we have

αq = inf
g

qq̂E(g1/q̂, g1/q)

4 Entπ(g)
. (9)

From this expression it is clear that αq = αq̌.

Theorem 2.3. (i) For any 1 ≤ q ≤ p ≤ 2 we have

qq̂E(g1/q̌, g1/q) ≥ pp̂E(g1/p̂, g1/p), ∀g ≥ 0.

(ii) The function q 7→ αq is non-increasing on [1, 2]. In particular α2 is the smallest
log-Sobolev constant.

Proof. (ii) is a simple consequence of (i) and the definition of log-Sobolev constants. The
inequality in (i) is called the Stroock-Varopoulos inequality, whose proof can be found e.g.
in [12, Theorem 2.1]. Here we given a different proof. For any t ≥ 0 and f ≥ 0 define

ht(s) = 〈f 2−s, Ttf
s〉π.
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Observe that ht(2− s) = ht(s) so that ht is symmetric about s = 1. Therefore all the the
odd-order derivatives of ht at s = 1 vanish and for the Taylor expansion of ht at s = 1
we have

ht(s) = ht(1) +
∞∑
j=1

cj
(2j)!

(s− 1)2j,

with

cj =
d2j

ds2j
ht(s)

∣∣∣
s=1

.

By a simple computation we have

ht(s) =
∑
x,y

π(x)Tt(x, y)f(x)2es log(f(y)/f(x)).

That is ht(s) is a summation of exponential functions with positive coefficients. From
this we obtain cj ≥ 0 for all j.

Now define

ψt(s) =
ht(s)− ht(0)

(s− 1)2 − s
=
∞∑
j=1

cj
(2j)!

( j−1∑
i=1

(s− 1)2i

)
.

For this expression and non-negativity of cj’s we find that ψt(s) is non-decreasing on
[1,∞). Therefore, limt→0+ ψt(s)/t is non-decreasing on the same interval. On the other
hand, using ht(0) = E[f 2] = h0(s) we compute

lim
t→0+

ψt(s)

t
=

1

(s− 1)2 − 1
lim
t→0+

ht(s)− ht(0)

t

=
1

(s− 1)2 − 1
lim
t→0+

ht(s)− h0(s)

t

=
1

(s− 1)2 − 1

∂

∂t
ht(s)

∣∣∣
t=0

= − 1

(s− 1)2 − 1

〈
f 2−s,Lf s

〉
π
.

Therefore

s 7→ − 1

(s− 1)2 − 1

〈
f 2−s,Lf s

〉
π
,

is non-decreasing on [1,+∞). Now the desired result follows once we identify 2/s with p
(and 2/(2− s) with p̂, its Hölder conjugate) and f =

√
g.

We can now state the main result of this section.

Theorem 2.4. Let L be the generator of a reversible and primitive Markov semigroup.

(i) We have

‖Tt‖q→p ≤ 1, ∀p, q > 1,
p− 1

q − 1
≤ e4α2t.
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(ii) Conversely if for some q > 1 we have

‖Tt‖q→p ≤ 1, ∀p > 1,
p− 1

q − 1
≤ e4ct,

then αq ≥ c.

Proof. (i) Let q > 1 be arbitrary and define t(p) = 1
4α2

log p−1
q−1

. For some f ≥ 0 define

ψ(p) = ‖f‖q − ‖Tt(p)f‖p.

By a straightforward computation (using Proposition 2.1) we have

ψ′(p) = − 1

p2
E[gp]

1−p
p

(
Entπ(gp)−

p2

4α2(p− 1)
〈g1/p̂
p , g1/p

p 〉π
)
.

where gp =
(
Tt(p)f

)p
. Now since by Theorem 2.3 we have αq ≥ α2. Therefore, ψ′(p) ≥ 0.

Therefore, for any p ≥ q we have

ψ(p) ≥ ψ(q) = 0.

This gives the desired hypercontractivity inequality.

(ii) The proof is similar to that of part (i). Let t(p) = 1
4α2

log p−1
q−1

and

ψ(p) = ‖f‖q − ‖Tt(p)f‖p.

Then by assumption we have ψ(p) ≥ 0 for all p ≥ q. We also have ψ(q) = 0. Therefore,
ψ′(q) ≥ 0. Computing ψ′(q) as above, the desired log-Sobolev inequality is derived.

Based on this theorem, in order prove hypercontractivity inequalities our main goal
would be to estimate the 2-log-Sobolev constant α2 which by definition is equal to

α2 = inf
f≥0

E(f, f)

Entπ(f 2)
.

Sometimes the 2-log-Sobolev inequality or the 2-log-Sobolev constant is referred just by
log-Sobolev inequality or log-Sobolev constant.

In the following proposition we show that the 2-log-Sobolev constant provides a lower
bound on the spectral gap.

Proposition 2.5. λ ≥ 2α2.

Proof. Let g be a function with Eg = 0. Then for sufficiently small |ε| > 0, the function
fε = 1 + εg is positive and we have

α2 Entπ(f 2
ε ) ≤ E(fε, fε).

Therefore, ψ(ε) = E(fε, fε)−α2 Ent(f 2
ε ) ≥ 0 is non-negative. On the other hand we have

ψ(ε) = ε2
(
E(g, g)− 2α2E[g2]

)
+O(ε3).

Therefore, 2α2Eg2 ≤ E(g, g). Comparing to (5) we obtain the desired bound on λ.
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Interestingly we can prove lower bounds on α2 in terms of the spectral gap.

Theorem 2.6. Suppose that for some q ≥ 2 and tq > 0,Mq > 0 we have

‖Ttq‖2→q ≤Mq.

Then we have

α2 ≥
(1− 2/q)λ

2(λtq + lnMq + (q − 2)/q)

The proof of this theorem is based on interpolation theory for which we refer to [1,
Theorem 3.9].

We now present the so-called tensorization property of log-Sobolev constants.

Theorem 2.7. (Subadditivity of Entropy) Let (Ω1×Ω2, π1× π2) be a product probability
space and let f : Ω1 × Ω2 → R be an arbitrary non-negative function. Then we have

Entπ1×π2f ≤ Eπ1
[

Entπ2(f)
]

+ Eπ2
[

Entπ1(f)
]
.

The proof of this theorem is based on the convexity of s 7→ s log s and is left for the
reader.

Theorem 2.8. Let (Ωk, πk), for k = 1, . . . , n, be a probability spaces and let Lk be a
Lindblad operator. Let αq(Lk) be the q-log-Sobolev constant of Lk. Consider the product
probability space (Ω̃, π̃) with Ω̃ = Ω1 × · · · × Ωm, and π̃ = π1 ⊗ · · · ⊗ πm. Then L̃ =
L̂1 + · · · L̂m, where Lk is the lift of Lk acing on L2(π̃), is a Lindblad operator which
generates

T̃t = e−tL̃ = e−tL1 ⊗ · · · ⊗ e−tLm .
Moreover we have

αq(L̃) = max
k
αq(Lk).

The proof of this theorem is a straightforward consequence of the sub-additivity of
the entropy function.

3 Reverse hypercontractivity

In the previous section we derived inequalities of the form ‖Ttf‖p ≤ ‖f‖q for p, q ≥ 1
using log-Sobolev inequalities. Interestingly log-Sobolev inequalities can also be used to
find inequalities in the reverse direction ‖Ttf‖p ≥ ‖f‖q but for p, q < 1.

We first extend the definition of the p-norm for p < 1. For any positive function f > 0
and p 6= 0 define

‖f‖p = (Efp)1/p,

as before, and for p = 0 let

‖f‖0 = lim
p→0
‖f‖p = eE[log f ].

13



Observe that

‖f‖−p = ‖f−1‖−1
p . (10)

‖ · ‖p for p < 1 does not satisfy triangle’s inequality and is not a norm (but a semi-norm),
yet by abuse of terminology we still call it a norm.

A variant of Hölder’s duality still holds for p < 1: for any f > 0 we have

‖f‖p = inf
g>0

〈f, g〉
‖g‖p̂

,

where as before p̂ is the Hölder conjugate of p given by (6) and p̂ = 0 for p = 0.
Proposition 2.1 holds for p < 1 as well and then the map p 7→ ‖f‖p is non-decreasing
over R (not just for p ≥ 1).

We define p-log-Sobolev inequalities for p < 1 similarly as before according to (8) if
p 6= 0. Log-Sobolev constants are defined similarly by (9). For p = 0 the 0-log-Sobolev
inequality would be obtained in the limit of p→ 0 and is given by

α0Var[log f ] ≤ −1

2
E(f, 1/f).

Then again we have αp = αp̂ for all p. Moreover, Theorem 2.3 extends to the interval
[0, 2] by the same proof. Thus p 7→ αp is non-decreasing on [0, 2].

The tensorization property of log-Sobolev constants as stated in Theorem 2.8 is also
generalized to αp’s for p < 1 with the same proof.

Here we should mention that 0-log-Sobolev inequality is equivalent to the Poincare
inequality

λVar[f ] ≤ E(f, f), ∀f.

Proposition 3.1. α0 = λ/2.

Observe that by this proposition the inequality α2 ≤ λ/2 that we proved in Proposi-
tion 2.5 follows from the monotonicity of log-Sobolev constants in Theorem 2.3.

Proof. The proof of λ ≥ 2α0 is similar to that of Proposition 2.5, i.e., consider the 0-
log-Sobolev inequality for f = 1 + εg for sufficiently small |ε| > 0. The other direction
2α0 ≥ λ is derived from the inequality

E(log f, log f) ≤ −E(f, 1/f),

for whose proof we refer to [12, Corollary 2.5].

By a convexity type argument we can again show that for any p < 1 we have

‖Ttf‖p ≥ ‖f‖p, ∀f > 0.

That is, Tt is a reverse contraction under p-norms for all p < 1. However, using p-log-
Sobolev inequalities for p < 1 we can prove stronger inequalities that are called reverse
hypercontractivity inequalities.
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Theorem 3.2. For every f > 0 we have

‖Ttf‖p ≥ ‖f‖q, ∀p < q < 1, e4α1t ≥ 1− p
1− q

.

The proof of this theorem is identical to that of Theorem 2.4. The only difference is
that here since we are interested in p < q < 1 the relevant log-Sobolev constants αp are
those with p ∈ [0, 1]. The smallest such log-Sobolev constant is α1 and this is why α1

appears in the statement of theorem (instead of α2 as compared to Theorem 2.4).

This theorem shows that 1-log-Sobolev inequalities are also special (besides 2-log-
Sobolev inequalities) and sometimes they are called modified log-Sobolev inequalities.
Modified log-Sobolev inequalities are important not only for proving reverse hypercon-
tractivity inequalities, but also for proving bounds on the entropy production of Markov
semigroups.

Proposition 3.3. For any reversible Markov semigroup {Tt : t ≥ 0} and f ≥ 0 we have

Entπ(Ttf) ≤ e−4α1tEntπ(f).

Proof. Using E[Ttf ] = Ef and the 1-log-Sobolev inequality we have

d

dt
Entπ(Ttf) =

d

dt
E[Ttf log Ttf ] = −E[LTtf log Ttf ] = −E(Ttf, log Ttf) ≤ −4α1Entπ(Ttf).

Integrating this inequality we obtain the desired result.

Let us finish this section by mentioning that hypercontractivity inequalities were first
studied in the context of quantum field theory in [19, 20]. Also, the notion of log-
Sobolev inequalities was first introduced in the seminal paper of Gross [18]. For a more
detailed history of the subject we refer the reader to [24]. For the history of reverse
hypercontractivity inequalities see [12] and reference therein.

4 From discrete to continuous Markov processes

In this section we introduce an interesting example of Markov semigroups. Let K be a
stochastic matrix. For instance, K may be the transition matrix of a random walk on a
graph. Then the transition matrix at the m-th step of the walk is Km, and {Km : m ∈ N}
is a (discrete) semigroup. In the following we associate a continuous Markov semigroup
to K.

To obtain a continuous process, instead of making a move at each time step, we may
wait for a random amount of time and then make a move according to the transition
matrix K. To get a Markov process, this waiting time must be memoryless, i.e., the
waiting time must come from an exponential random variable . In other words, our
moves are going to be made at points determined by a Poisson process. To describe this
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process more precisely, let Nt be an independent Poisson process with rate t. Then we
define

Tt = E[KNt ],

where the expectation is over Nt. Indeed we have

Tt = e−t
∞∑
j=0

tj

j!
Kj.

From the above equation it is clear that Tt = e−tL where

L = I −K.

Assuming that K is reversible with stationary distribution π, this Lindblad operator L
is self-adjoint as an operator acting on L2(π). In this case, we have

E(f, g) = 〈f, (I −K)g〉π
=
∑
x

π(x)f(x)
(
g(x)−

∑
y

K(x, y)g(y)
)

=
∑
x

π(x)f(x)
∑
y

(
K(x, y)(g(x)− g(y))

)
=
∑
x,y

π(x)K(x, y)f(x)(g(x)− g(y)).

where in the third line we use K1 = 1. Using the detailed balance condition (3) we can
also write

E(f, g) =
∑
x,y

π(y)K(y, x)f(x)(g(x)− g(y))

=
∑
x,y

π(x)K(x, y)f(y)(g(y)− g(x)).

Then taking the average of the above two equations we find that

E(f, g) =
1

2

∑
x,y

K(x, y)π(x)(f(x)− f(y))(g(x)− g(y)). (11)

From this formula it is clear that E(f, f) ≥ 0 which was proved before.

Example 1: Let K be the trivial transition matrix with K(x, y) = π(y) where π is an
arbitrary distribution. Then we have Kf = Ef , and L = I − E is the example that we
considered in Section 1 as well. L = I − E is sometimes called the simple generator. In
this case using E2 = E we have

Tt = e−tI + (1− e−t)E.

We also have
E(f, f) = Varf.
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The spectral gap is easily verified to be equal to λ = 1. It is shown in [1, Theorem A.1]
that

α2 =
1− 2πmin

log(π−1
min − 1)

,

where
πmin = min

x
π(x).

In particular, if π is the uniform distribution we have

α2 =
1− 2

|Ω|

log(|Ω| − 1)
,

and if |Ω| = 2 we have α2 = 1/2. We will study this latter case in more detailes later on.

Estimating α1 for this Markov semigroup is easy. Using the concavity of the logarithm
function we have

Entπ(f) = E[f log f ]− E[f ] logE[f ]

≤ E[f log f ]− E[f ]E[log f ]

= E[f(log f − E log f)]

= E(f, log f).

Therefore, considering the normalization factor of the 1-log-Sobolev inequality we have
α1 ≥ 1/4.

The following corollary first appeared in [1, Corollary A.4] gives a general bound on
the 2-log-Sobolev constant.

Corollary 4.1. For any Lindblad operator L with spectral gap λ we have

α2 ≥
(1− 2πmin)λ

log(π−1
min − 1)

Proof. Having the log-Sobolev constant of the previous example we have

1− 2πmin

log(π−1
min − 1)

Ent(f 2) ≤ 〈f, (I − E)f〉π = Varf.

Combining this with the Poincare inequality λVarf ≤ E(f, f) we obtain the desired
result.

Example 2: Let K denote the random walk on the complete graph on n vertices. Then
π is the uniform distribution π = 1/n, and we have [1]

α2 =
n− 2

(n− 1) log(n− 1)
,

if n > 3, and for n = 2 we have α2 = 1. Observe that the inequality of Corollary 4.1
is tight for the example of complete graph. The following bounds on the 1-log-Sobolev
constant of K are derived in [3, Lemma 2.6]

n

4(n− 1)
≤ α1 ≤

(1

4
+

1

log(n+ 1)

) n

n− 1

17



Example 3: Let K denote the random walk on the hypercube Ω = {+1,−1}n where
x, y ∈ Ω are adjacent if they are different only in a single coordinate. The stationary
distribution of this random walk is the uniform distribution π = 1/2n. Define

A =

(
0 1
1 0

)
.

A is associated with the random walk on the complete graph on 2 vertices. Then we have

K =
1

n
(Â1 + . . . Ân),

where Âj is the lift of A acting on the j-th coordinate. We saw in the previous example
that α2(I − A) = 1. Then using Theorem 2.8 we have

α2(I −K) =
1

n
α2(I − A) =

1

n
.

Note that in this case λ = 2/n.

Example 4: Let Ω = Sn be the symmetric group. Consider the random walk on Sn with
transition matrix K(σ, σ′) = 2/(n(n − 1)) if σ−1σ′ is a transposition, and K(σ, σ′) = 0
otherwise. The stationary distribution is π = 1/n!. We have λ = 2/(n− 1). It is proved
in [1] that

1

3n lnn
≤ α2 ≤

1

n− 1
.

Also it is shown in [3, Corollary 3.1] that

1

4(n− 1)
≤ α1 ≤

1

n− 1
.

5 The Ornstein-Uhlenbeck semigroup

So far we have considered only discrete probability spaces to avoid some technicalities
that arise in the continue case. Nevertheless, the theory of log-Sobolev inequalities and
hypercontractivity inequalities is developed similarly in the continue case as well. In this
section we study the important example of the Ornstein-Uhlenbeck semigroup.

Recall that the density of the normal (Gaussian) distribution N (a, σ2) on R with
mean a and variance σ2 is given by

dν =
1√

2πσ2
e−

(x−a)2

2σ2 dx.

That is, for every measurable (and sufficiently nice) function f : R→ R we have

Eν [f ] =
1√

2πσ2

∫ +∞

−∞
fe−

(x−a)2

2σ2 dx.

We are in particular interested in the normal distribution N (0, 1) with zero-mean and
variance 1 which we call the standard normal distribution. The importance of the normal
distribution relies on the famous central limit theorem.
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Theorem 5.1. (Central limit theorem) Let X1, . . . , Xn be i.i.d. real random variables
with mean E[X] = a and variance Var[X] = σ2. Then

Sn :=
X1 + · · ·+Xn − na√

n
,

converges to the normal distribution N (0, σ2) in distribution as n→∞. That is,

lim
n→∞

Pr[Sn ≤ s] =
1√

2πσ2

∫ s

−∞
e−

x2

2σ2 dx

Here is a simple consequence of the central limit theorem that can also be proven
directly as an exercise.

Proposition 5.2. Let Xi, for i = 1, . . . , k be independent normal random variables
with distributions N (ai, σ

2
i ). Then for arbitrary constants c1, . . . , ck, the random variable∑

i ciXi is also normal with distribution N (a, σ) where a =
∑

i ciai and σ2 =
∑

i c
2
iσ

2
i .

For any sufficiently nice function f : R→ R define the operator L by

Lf(x) := xf ′(x)− f ′′(x).

We are going to show that L is a valid Lindblad generator of a Markov semigroup and
compute the corresponding semigroup.

In the following, all expectations are with respect to the standard normal distribution
π = N (0, 1). In particular, for two real functions f, g we denote

〈f, g〉π = E[fg] =
1√
2π

∫ +∞

−∞
f(x)g(x)e−

x2

2 dx.

Lemma 5.3. (a) L1 = 0.

(b) E[Lf ] = E[xf ′ − f ′′] = 0 for all f .

(c) 〈f,Lg〉π = E[f ′g′] = 〈Lf, g〉π.

Note that (c) shows that L is reversible with respect to the standard normal distri-
bution π = N (0, 1).

Proof. Item (a) is obvious from the definition. Item (b) follows from (a) and (c):

E[Lf ] = 〈1,Lf〉π = 〈L1, f〉π = 〈0, f〉π = 0.

To prove (c) we use integration by parts:

〈f,Lg〉π = 〈f, xg′ − g′′〉π

=
1√
2π

∫ +∞

−∞
f(x)

(
xg′(x)− g′′(x))e−

x2

2 dx

= − 1√
2π

∫ +∞

−∞
f(x)

(
g′(x)e−

x2

2

)′
dx

=
1√
2π

∫ +∞

−∞
f ′(x)g′(x)e−

x2

2 dx

= E[f ′g′].
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We now compute the semigroup generated by L. Define

Ttf(x) =
1√
2π

∫ +∞

−∞
f
(
e−tx+

√
1− e−2t y

)
e−

y2

2 dy. (12)

Observe that Ttf(x) can equivalently be written as

Ttf(x) = EY
[
f
(
e−tx+

√
1− e−2t Y

)]
,

with Y being a standard normal random variable.

The following proposition shows that {Tt : t ≥ 0} forms a semigroup whose generator
is L. This semigroup is called the Ornstein-Uhlenbeck semigroup.

Proposition 5.4. (a) Ttf ≥ 0 whenever f ≥ 0, and Tt1 = 1.

(b) limt→0+ Ttf(x) = f(x) and limt→∞ Ttf(x) = E[f ] for every bounded continuous func-
tion f .

(c) TtTs = Ts+t.

(d) TtL = LTt

(e) We have
∂

∂t
Ttf(x) = −LTtf(x).

and then E[Ttf ] = E[f ].

Proof. (a) is obvious from the definition and (b) is left as an exercise. To prove (c) we
compute

TtTsf(x) = EY
[
Tsf
(
e−tx+

√
1− e−2t Y

)]
= EYEZ

[
f
(
e−s
(
e−tx+

√
1− e−2t Y

)
+
√

1− e−2sZ
)]

= EYEZ
[
f
(
e−(s+t)x+ e−s

√
1− e−2tY +

√
1− e−2sZ

)]
,

where Y, Z are independent standard normal distributions. Now using Proposition 5.2,
the random variable e−s

√
1− e−2tY +

√
1− e−2sZ is also normal with distributionN (0, σ2

where
σ2 = e−2s(1− e−2t) + (1− e−2s) = 1− e−2(s+t).

Therefore, for a standard normal U we have

TtTsf(x) = EU
[
f
(
e−(s+t)x+

√
1− e−2(s+t) U

)]
= Ts+tf(x).
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To prove (d) let us define g(y) := f(e−tx +
√

1− e−2t y). Then using E[Lg] = 0 we
have

TtLf(x) = EY
[
Lf
(
e−tx+

√
1− e−2t Y

)]
= EY

[(
e−tx+

√
1− e−2t Y

)
f ′
(
e−tx+

√
1− e−2t Y

)
− f ′′

(
e−tx+

√
1− e−2t Y

)]
= e−txEY

[
f ′
(
e−tx+

√
1− e−2t Y

)]
− e−2tE

[
f ′′
(
e−tx+

√
1− e−2t Y

)]
+ EY [Y g′(Y )− g′′(Y )]

= e−txEY
[
f ′
(
e−tx+

√
1− e−2t Y

)]
− e−2tEY

[
f ′′
(
e−tx+

√
1− e−2t Y

)]
= x

∂

∂x
EY
[
f
(
e−tx+

√
1− e−2t Y

)]
− ∂2

∂x2
EY
[
f
(
e−tx+

√
1− e−2t Y

)]
= x

∂

∂x
Ttf(x)− ∂2

∂x2
Ttf(x)

= LTtf(x).

For (e) we again use EY [Y g′(Y )] = EY [g′′(Y )] for the above function g as follows:

∂

∂t
Ttf(x) =

∂

∂t
EY
[
f
(
e−tx+

√
1− e−2t Y

)]
= EY

[(
− e−tx+

e−2t

√
1− e−2t

Y
)
f ′
(
e−tx+

√
1− e−2t Y

)]
= −e−txEY

[
f ′
(
e−tx+

√
1− e−2t Y

)]
+

e−2t

1− e−2t
EY [Y g′(Y )]

= −e−txEY
[
f ′
(
e−tx+

√
1− e−2t Y

)]
+

e−2t

1− e−2t
EY [g′′(Y )]

= −e−txEY
[
f ′
(
e−tx+

√
1− e−2t Y

)]
+ e−2tEY [f ′′

(
e−tx+

√
1− e−2t Y

)
]

= −LTtf(x),

where the last step follows from the computations done above.

Now that we have a Markov semigroup, it is natural to estimate its log-Sobolev
constants.

Theorem 5.5. Let Lf = xf ′−f ′′ be the generator of the Ornstein-Uhlenbeck semigroup.
Then we have

α2(L) ≥ 1

2
.

Equivalently, for every function f we have

Entπ(f 2) ≤ 2〈f,Lf〉π = 2E[f ′2] =
2√
2π

∫ +∞

−∞
f ′(x)2e−

x2

2 dx. (13)

Note that the entropy function here is defined as before:

Entπ(g) = E[g log g]− E[g] logE[g],

where the expectations are with respect to the standard normal distribution.
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Proof. We will present two proofs for this theorem.

First proof: For a smooth bounded function f we have T0g = g and limt→∞ Ttg = E[g].
Therefore, letting g = f 2 we have

Entπ(f 2) = E[g log g]− E[g] logE[g]

= −
∫ ∞

0

d

dt
E
[
Ttg · log Ttg

]
dt

= −
∫ ∞

0

−E
[
LTtg · log Ttg − LTt(g)

]
dt

=

∫ ∞
0

E
[
LTtg · log Ttg

]
dt

=

∫ ∞
0

〈LTtg, log Ttg〉 dt

=

∫ ∞
0

E
[
(Ttg)′ · (log Ttg)′

]
dt

=

∫ ∞
0

E
[(Ttg)′2

Ttg

]
dt

We have
Ttg(x) = EY

[
g(e−tx+

√
1− e−2t Y )

]
.

Therefore, using the Cauchy-Schwarz inequality we have

(Ttg)′(x) = e−tEY
[
g′(e−tx+

√
1− e−2t Y )

]
= 2e−tEY

[
f(e−tx+

√
1− e−2t Y )f ′(e−tx+

√
1− e−2t Y )

]
≤ 2e−t

(
EY
[
f 2(e−tx+

√
1− e−2t Y )

]
EY
[
f ′2(e−tx+

√
1− e−2t Y )

])1/2

= 2e−t
(
Ttg(x)Tt(f

′2)(x)
)1/2

.

We conclude that
(Ttg)′(x)2

Ttg(x)
≤ 4e−2tTt(f

′2)(x).

As a result,

Entπ(f 2) ≤
∫ ∞

0

4e−2tE
[
Tt(f

′2)
]
dt

=

∫ ∞
0

4e−2tE
[
f ′2
]
dt

= 2E
[
f ′2
]
.

Second proof: Observe that by Example 1, the 2-log-Sobolev constant in this theorem
equals the 2-log-Sobolev constant of the simple Lindblad operator I − E associated with
the uniform distribution on Ω = {+1,−1}. This together with the central limit theorem
gives another proof of the above log-Sobolev inequality [18].
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Using the tensorization property of log-Sobolev inequalities, i.e., Theorem 2.8, to-
gether with the fact that α2(I−E) = 1/2 we find that for every function g : {+1,−1}n →
R

Ent(g2) ≤ 1

2
E
[ n∑
i=1

(
g(x1, . . . , xn)− g(x1, . . . ,−xi, . . . , xn)

)2
]
. (14)

Let us take an arbitrary f : R → R, say with bounded first and second derivatives, and
in the above inequality let

gn(x1, . . . , xn) := f
(x1 + · · ·+ xn√

n

)
.

By the central limit theorem the distribution of x1+···+xn√
n

, when (x1, . . . , xn) is chosen uni-

formly in {+1,−1}n, converges to the standard normal distribution. Therefore, Ent(g2
n)

converges to Entπ(f 2) as n → ∞. Analyzing the limit of right hand side needs more
work. Observer that

gn(x1, . . . , xn)− gn(x1, . . . ,−xi, . . . , xn) = f
(x1 + · · ·+ xn√

n

)
− f

(x1 + · · ·+ xn − 2xi√
n

)
=

2xi√
n
f ′
(x1 + · · ·+ xn√

n

)
+O

(∣∣∣2xi√
n

∣∣∣2)
=

2xi√
n
f ′
(x1 + · · ·+ xn√

n

)
+O

( 1

n

)
.

Therefore,(
g(x1, . . . , xn)− g(x1, . . . ,−xi, . . . , xn)

)2
=

4

n
f ′2
(x1 + · · ·+ xn√

n

)
+O

( 1

n3/2

)
,

and

n∑
i=1

(
g(x1, . . . , xn)− g(x1, . . . ,−xi, . . . , xn)

)2
= 4f ′2

(x1 + · · ·+ xn√
n

)
+O

( 1√
n

)
.

Now as before, using the central limit theorem we find that

E
[
f ′2
(x1 + · · ·+ xn√

n

)]
tends to E[f ′2] as n → ∞ and the O(1/n) term vanishes. Using these in (14) we obtain
the desired inequality.

The above theorem can be applied to functions f that are not necessarily smooth. It
suffices to replace f ′ on the hand side of (13) with

f ′(x) := lim sup
y→x

f(y)− f(x)

y − x
.

In particular, (13) holds for Lipschitz functions as well.
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By the Stroock-Varopoulos inequality we have α1(L) ≥ α2(L) = 1/2. Therefore, for
every g we have

Entπ(eg) ≤ 1

2
〈g,Leg〉 =

1

2
E[g′2eg]. (15)

Another way to see this (without using the Stroock-Varopoulos inequality) is to use (13)
for the function f = eg/2.

The Ornstein-Uhlenbeck semigroup can also be defined in higher dimensions. Let
us first recall some notations. Vectors in Rk are denoted by boldface letters x =
(x1, . . . , xk) ∈ Rk. We also use the notation

x · y =
k∑
i=1

xiyi,

and |x|2 = x · x =
∑

i x
2
i . Then the gradient of a function f : Rk → R equals

∇f = (∂1f, · · · , ∂kf),

where for simplicity of notation we use

∂i =
∂

∂xi
.

Then we have

|∇f |2 =
k∑
i=1

(∂if)2.

The divergence of a tuple of functions (f1, . . . , fk) is defined by

div(f1, . . . , fk) =
k∑
i

∂ifi.

Then div∇f equals the Laplacian:

∆f = div(∇f) =
k∑
i=1

∂2
i f.

Corollary 5.6. For every sufficiently nice function f : Rk → R we have

Entπ(f 2) ≤ 2

(2π)
k
2

∫
Rk
|∇f(x)|2e−

|x|2
2 dx.

Here the entropy function is defined with respect to the k-dimensional standard normal
distribution, i.e., when the expectations are given by

E[g] =
2

(2π)
k
2

∫
Rk
g(x)e−

|x|2
2 dx.
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Proof. This corollary follows from the tensorization property of log-Sobolev inequalities,
i.e., Theorem 2.8. The point is that product of Gaussian distributions becomes a multidi-
mensional Gaussian distribution. In particular, the density of the product of n standard
normal distributions is

k∏
i=1

( 1√
2π
e−

x2i
2

)
dxi =

1

(2π)
k
2

e−
|x|2
2 dx. (16)

Moreover, the Lindblad operator L̃ = L̂1 + · · ·+ L̂n is given by

L̃f(x) =
k∑
i=1

xi∂if(x)− ∂2
i f(x) = x · ∇f(x)−∆f(x).

It is not hard to verify that the Dirichlet form associated with L̃ is equal to

〈f, L̃g〉π = E[∇f · ∇g],

where the expectation is with respect to the density (16). Using these in the associated
log-Sobolev inequality that is derived from Theorem 5.5 and Theorem 2.8 we obtain the
desired result.

We finish this section with the remark that the above computations for the stan-
dard normal distribution can be generalized to other distributions on Rk. Let π be a
distribution on Rk with density

dπ = e−V (x)dx.

Then define the Lindblad operator L = ∇V · ∇ −∆ by

Lf(x) =
k∑
i=1

∂iV (x)∂if(x)− ∂2
i f(x). (17)

It can be shown that this Lindblad operator is reversible with respect to π, and whose
associated Dirichlet form is

〈f,Lg〉π =

∫
Rk
∇f · ∇gdπ =

∫
Rk
e−V (x)∇f · ∇gdx

Observe that for the standard normal distribution we have V (x) = |x|2/2 + k ln(2π)/2 in
which case (17) reduces to what we had before.

The log-Sobolev inequality associated to such distributions on Rk can be stated in
terms of the so-called Bakry-Emery criterion [21].

Theorem 5.7. Let π be a Borel probability measure on Rk with dπ = e−V (x)dx such that
Hess(V ) ≥ cI for some constant c. Then for all functions f we have

Entπ(f 2) ≤ 2

c

∫
|∇f |2dπ.

Equivalently, we have α2(∇V · ∇ −∆) ≥ c/2.
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Observe that for the standard Gaussian measure V (x) = −1
2
|x|2 and Hess(V ) = I, in

which case the above theorem coincides with the log-Sobolev inequality for the standard
normal distribution.

The above theorem can be proven based on similar ideas as in the first proof of
Theorem 5.5 (See Appendix A). Later, we will give yet another proof of this theorem.

6 Bounding the mixing time

Let (Ω, π) be a probability space and let L be a primitive reversible Lindblad operator
with positive spectral gap λ > 0. As we argued in the remark following Proposition 1.2,
for any other probability measure µ on Ω we have µTt → π as t tends to ∞. Our goal in
this section is to derive bounds on the rate of this convergence. To this end let us define

τmix := min{t : ‖µTt − π‖TV ≤
1

2e
, ∀µ}, (18)

where ‖ · ‖TV denotes the total variation distance defined by

‖ρ‖TV =
1

2

∑
x

|ρ(x)|.

The choice of constant 1/(2e) in the definition of τmix is arbitrary. To see this, suppose
that ‖µTt − π‖TV ≤ 1/(2e) for all measures µ. Let ρ be an arbitrary function with∑

x ρ(x) = 0. Let ρ+(x) = max{ρ(x), 0}, and ρ− = ρ+ − ρ. Then ρ̃+ = ρ+/θ and
ρ̃− = ρ−/θ for θ = ‖ρ‖TV are probability distributions. We compute

‖ρTt‖TV = ‖ρ+Tt − ρ−Tt‖TV

= θ‖ρ̃+Tt − ρ̃−Tt‖TV

≤ θ
(
‖ρ̃+Tt − π‖TV + ‖ρ̃−Tt − π‖TV

)
≤ ‖ρ‖TV/e.

Now let µ be an arbitrary measure. Since
∑

x(µTt − π)(x) = 0 we have

‖µT2t − π‖TV = ‖(µTt − π)Tt‖TV ≤ ‖µTt − π‖TV/e ≤ 1/2e2 ≤ 1/e2.

Similarly, by a simple induction we have

‖µTmt − π‖TV ≤ 1/em.

This means that a bound on the mixing time τmix for error 1/e gives the bound τmix log(ε−1)
on the mixing time for error ε.

Let us turn back to the problem of estimating the mixing time τmix defined in (18).
Our first approach for finding an upper bound on τmix is via Proposition 1.2. For this we
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first need to upper bound the total variation distance in terms of the 2-norm. For any
probability measure µ we have

‖µ− π‖TV = max
f :f(x)∈{±1}

1

2

∑
x

f(x) · (µ(x)− π(x))

= max
f :f(x)∈{±1}

1

2

∑
x

f(x)π(x)1/2 · (µ(x)− π(x))π(x)−1/2

≤ max
f :f(x)∈{±1}

1

2

√∑
x

f(x)2π(x) ·
√∑

x

(µ(x)− π(x))2π(x)−1

=
1

2

√∑
x

(µ(x)− π(x))2π(x)−1

=
1

2

∥∥∥µ
π
− 1
∥∥∥

2
,

where by µ
π

we mean the function µ
π
(x) = µ(x)/π(x). Using this inequality we have

‖µTt − π‖TV ≤
1

2

∥∥∥µTt
π
− 1
∥∥∥

2
.

Now using (4) based on the detailed balance condition we have

µTt
π

= Ttf,

where f = µ/π. We continue

‖µTt − π‖TV ≤
1

2
‖Ttf − 1‖2 =

1

2
‖Ttf − Ef‖2.

As a result, by Proposition 1.2 we have

‖µTt − π‖TV ≤
1

2
e−λt‖f − 1‖2.

Therefore,

max
µ
‖µTt − π‖TV ≤

1

2
e−λt max

f :f≥0,Ef=1
‖f − 1‖2

=
1

2
e−λt

√
πmin

( 1

πmin

− 1
)2

≤ 1

2

√
1

πmin

e−λt,

where
πmin = min

x
π(x).

Putting all these together we arrive at the following theorem.
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Theorem 6.1. For every reversible Markov semigroup we have

τmix ≤
1

λ

(
1 +

1

2
log

1

πmin

)
.

We now argue that the bound given by the above theorem is loose when α1 and λ are
of the same order.

Theorem 6.2. For every reversible Markov semigroup we have

τmix ≤
1

4α1

(log 2 + 2 + log log
1

πmin

) ≤ 1

4α2

(log 2 + 2 + log log
1

πmin

).

In the proof of this theorem we use Pinsker’s inequality

‖µ− π‖2
TV ≤

1

2
D(µ‖π), (19)

where D(µ‖π) is the KL-divergence defined in (7). Indeed this inequality will be replaced
with the estimation of the total variation distance with the 2-norm (sometimes called the
χ2-divergence) in the proof of Theorem 6.1.

Proof. Let µ be an arbitrary probability measure. Then for ft = µTt
π

we have ft = Ttf0.
We then have

‖µTt − π‖2
TV ≤

1

2
D(µTt‖π) =

1

2
Ent(ft).

Next by Proposition 3.3 we have

Ent(ft) ≤ e−4α1t Ent(f0) = e−4α1tD(µ‖π).

Therefore, using the convexity of µ 7→ D(µ‖π) we have

max
µ
‖µTt − π‖2

TV ≤
1

2
e−4α1t max

µ
D(µ‖π) =

1

2
e−4α1t log

1

πmin

.

Letting the right hand side to be equal 1/(2e)2, we obtain the desired bound on τmix.

The reason that we express the bound of Theorem 6.2 in terms of the 2-log-Sobolev
constant is that computing α2 is usually easier than computing α1. Nevertheless, some-
times α1 gives a much better bound.

Let us now compare the bounds given by the above two theorems for the examples of
Section 4.

For the random walk on the hypercube {+1,−1} (Example 3) we saw that α2 =
λ/2 = 1/n. Moreover, π = 1/2n is the uniform distribution. Then using Theorem 6.1 we
obtain τmix = O(n2) on the mixing time, while Theorem 6.2 gives τmix = O(n log n). So
the theory of log-Sobolev inequalities gives a much better bound. Indeed the advantage
of the bound of Theorem 6.2, comparing to that of Theorem 6.1 is that in the former
πmin appears as log log(1/πmin) while in the latter it appears on log(1/πmin).

Another example is the random transposition (Example 4). In this case λ = 2/(n−1)
and 1/α1 = O(n). We also have π = 1/n!. Then Theorem 6.1 gives τmix = O(n2 log n),
while Theorem 6.2 gives τmix = O(n log n) which was first proved in [2].
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7 Analysis of boolean functions

On the applications of the hypercontractivity inequalities is in the analysis of boolean
functions. Here we present an introduction to this theory. For more details we refer the
reader to the survey [4].

Let f : {+1,−1}n → R be an arbitrary boolean function. In the following we inter-
changeably use two parameters ρ ∈ [0, 1] and t ≥ 0 that are related by

ρ = e−t.

For any such ρ (or t) we define the function Ttf : {+1,−1}n → R as follows:

Ttf(y) =
∑
x

(1 + ρ

2

)n−dH(x,y)(1− ρ
2

)dH(x,y)

f(x), (20)

where dH(x, y) denotes the Hamming distance between x, y ∈ {+1,−1}n, i.e., the number
of coordinates in which x and y differ. Indeed Ttf is a noisy version of f . Given y =
(b1, . . . , bn) we flip each bit bi of y with probability (1− ρ)/2, and independently of other
bits, to get some random x ∈ {+1,−1}n. Then we let Ttf(y) to be the expectation of
f(x) over this random choice of x. We can state this more formally as follows.

Let (A,B) be two binary random variables jointly distributed according to

p(A = +1, B = +1) = p(A = −1, B = −1) =
1 + ρ

4
,

p(A = +1, B = −1) = p(A = −1, B = +1) =
1− ρ

4
.

Note that the marginal distributions of A andB are uniform. Now take (X, Y ) = (An, Bn)
be n i.i.d. copies of (A,B). Then a simple calculation shows that

Ttf(y) = E[f(X)|Y = y].

That is, Ttf(y) is equal to the expectation of f(X) conditioned on Y = y.

Fourier expansion: We present yet another interpretation of Ttf . Equip the linear
space of real functions on {+1,−1}n with the inner product associated with the uniform
distribution:

〈f, g〉 := E[fg] =
1

2n

∑
x

f(x)g(x).

This is a 2n-dimensional inner product space. For any S ⊆ [n] = {1, . . . , n} define the
function χS : {+1,−1}n → R as follows:

χS(a1, . . . , an) =
∏
j∈S

aj.

There are 2n of these functions χS. Moreover, a simple calculation verifies that these
functions are orthonormal to each other, i.e.,

〈χS, χS′〉 = δS,S′ ,
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where δS,S′ = 1 if S = S ′ and δS,S′ = 0 otherwise. Therefore, {χS : S ⊆ [n]} forms an
orthonormal basis for the space of functions on {+1,−1}n, and any function f can be
written as a linear combination of these basis vectors:

f =
∑
S⊆[n]

f̂S χS.

The coefficients f̂S ∈ R in this expansion are called the Fourier coefficients, and can be
computed by f̂S = 〈f, χS〉 = E[fχS].

From definition (20) it is clear that Tt is a linear map. So to understand its action, we
may first compute its action on basis vectors. In the simplest case when n = 1, we have
two basis functions χ∅ and χ{1}. Since χ∅ is the constant function we have Ttχ∅ = χ∅.
We also have

Ttχ{1}(+1) =
1 + ρ

2
− 1− ρ

2
= ρ,

Ttχ{1}(−1) = −1 + ρ

2
+

1− ρ
2

= −ρ.

Thus Ttχ{1} = ρχ{1}. We leave it as an exercise for the reader to show that in general for
any S ⊆ [n] we have

TtχS = ρ|S|χS.

Thus the action of Tt on a function f is nothing but multiplying the Fourier coefficient
f̂S by ρ|S|:

Ttf =
∑
S

f̂Sρ
|S|χS. (21)

Now from this representation of the noise operator Tt and the fact that ρ = e−t it is clear
that

TtTs = Tt+s.

That is, {Tt : t ≥ 0} forms a semigroup. What is more, from its definition (20) it is clear
that {Tt : t ≥ 0} is indeed a Markov semigroup.

The Lindblad operator: Let us compute the generator of this semigroup. For sim-
plicity we start with n = 1. In this case, we have

Ttχ∅ = χ∅, and Ttχ{1} = e−tχ{1}.

Therefore,

Lχ∅ = − d

dt
Ttχ∅

∣∣∣
t=0

= 0,

and

Lχ{1} = − d

dt
Ttχ{1}

∣∣∣
t=0

= χ{1}.

From these two equations it is clear that L = I −E, where E is the expectation operator
with respect to the uniform distribution.
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The Lindblad operator for arbitrary n can be computed similarly. We indeed have

L = nI −
n∑
j=1

Êj =
n∑
j=1

(I − Êj), (22)

where Êj is the lift of the expectation operator acting on the j-th coordinate, i.e., Êj is the
expectation operator acting on the j-th coordinate tensored with the identity operator
acting on other coordinates:

ÊjχS =

{
χS j /∈ S
0 otherwise.

From this we have

etÊjχS =

{
etχS j /∈ S
1 otherwise.

Now since the operators Êj defined above commute with each other we have

e−tLχS = e−nt
n∏
j=1

etÊjχS = e−ntet|S
c|χS = e−t|S|χS.

Then e−tL = Tt and L is the generator of the Markov semigroup.

The Bonami-Nelson-Gross-Beckner inequality: Our next goal is to compute the
log-Sobolev constants of this Markov semigroup. This can be done using the expres-
sion (22) for the Lindblad operator and Theorem 2.8. Using this theorem we have
αq(L) = αq(I −E), where by αq(I −E) we mean the q-log-Sobolev constant of the Lind-
blad operator for n = 1. We mentioned in Example 1 of Section 4 that α2(I − E) = 1/2.
As a result, using Theorem 2.4 we obtain a collection of hypercontractivity inequalities
for the above Markov semigroup.

Theorem 7.1 (Bonami-Nelson-Gross-Beckner inequality). For the noise operator Tt de-
fined in (20) we have

‖Tt‖q→p ≤ 1 iff

√
p− 1

q − 1
≤ et.

We emphasis again that based on Theorem 2.8, to prove the above theorem we only
need to prove it for n = 1, in which case the proof reduces to establishing an inequality
over a single real variable.

Theorem 7.1 is usually used for either q = 2 or p = 2 because the 2-norm can be
expressed in terms of the Fourier coefficients. Using the orthonormality of χS’s we have

‖f‖2
2 =

∥∥∑
S

f̂SχS
∥∥2

2
=
∑
S,S′

f̂S f̂S′E[χSχS′ ] =
∑
S

f̂ 2
S.
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This is called Parseval’s identity. Using (21) we similarly we have

‖Ttf‖2 =
∑
S

ρ2|S|f̂ 2
S.

The following proposition states that the Fourier mass of a Boolean function with a
small image is concentrated on higher degrees.

Proposition 7.2. Let f : {+1,−1}n → {−1, 0, 1} be a Boolean function. Then for every
ε ∈ [0, 1] we have ∑

S

ε|S|f̂ 2
S ≤ Pr[f(X) 6= 0]2/(1+ε),

where the probability is computed with respect to the uniform distribution on {+1,−1}n.

Proof. Let p = 1 + ε, q = 2 and ρ = e−t =
√
ε. Then using the Bonami-Nelson-Gross-

Beckner inequality and Parseval’s identity we have∑
S

ε|S|f̂ 2
S = ‖Ttf‖2

2 ≤ ‖f‖2
p.

Now the point is that
‖f‖pp = E[|f |p] = Pr[f(X) 6= 0].

Putting these together we obtain the desired inequality.

The degree of a Boolean function is defined by

deg f = max{|S| : f̂S 6= 0}.

By the following proposition a low-degree function does not have many picks because its
q-norm, for every q > 2, is not much larger than its 2-norm.

Proposition 7.3. Let deg f = d. Then for every q > 2 we have

‖f‖q ≤ (q − 1)d/2‖f‖2.

Proof. Let ρ = e−t = (q − 1)−1/2 and p = 2. Define g by

g =
∑
S

ρ−|S|f̂SχS =
∑

S:|S|≤d

ρ−|S|f̂SχS.

Observe that f = Ttg, and that

‖g‖2
2 =

∑
S:|S|≤d

ρ−2|S|f̂ 2
S ≤

∑
S:|S|≤d

ρ−2df̂ 2
S = ρ−2d‖f‖2

2.

Then by Theorem 7.1 we have

‖f‖2
q = ‖Ttg‖2

q ≤ ‖g‖2
2 ≤ ρ−2d‖f‖2

2.

We are done.
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The following proposition states that a low-degree Boolean function is highly concen-
trated.

Proposition 7.4. Let f be a Boolean function with Ef = 0 and E[f 2] = σ2. Let d = deg f
and r ≥ ed/2. Then we have

Pr[|f(X)| ≥ rσ] ≤ e−
dr2/d

2e .

Proof. Let q = r2/d/e. By Markov’s inequality

Pr[|f(X)|q ≥ (rσ)q] ≤ E[|f |q]/(rσ)q.

On the other hand by the previous proposition we have

E[|f |q]/(rσ)q = ‖f‖qq ≤ (q − 1)d/2‖f‖q2.

Putting these together we obtain the desired inequality.

The following theorem due to Kahn, Kalai and Linial is one of the main applications
of the Bonami-Nelson-Gross-Beckner inequality in theoretical compute science. To state
this theorem we need to define the influence of a variable. Let f : {+1,−1}n → {+1,−1}.
The influence of the j-th variable is defined by

Infj(f) := Pr[f(X) 6= f(X ⊕ ej)],

whereX⊕ej is obtained fromX by flipping its j-th coordinate. Infj(f) somehow measures
the dependence of f on the j-th variable.

Let us think of such f : {+1,−1}n → {+1,−1} as a function for a voting system in
which there are n parties where the j-th party vote for aj ∈ {+1,−1}. Then the outcome
of the voting is f(x) ∈ {+1,−1} for x = (a1, . . . , an). In this case Infj(f) measures the
probability, over the random choices of the votes of other parties, that the j-party can
determine the outcome of the voting system. A choice of such f is the dictator function
with f(a1, . . . , an) = ai. In this case Infj(f) is equal to 1 if j = i and is 0 otherwise.
Another example is the majority function, i.e., f(a1, . . . , an), say for an odd n, is equal to
the majority of a1, . . . , an. For this function it is not hard to see that Infj(f) = Θ(1/

√
n)

for all j.

One would expect that in a fair voting system the influence each party should be of
order 1/n. The question is whether such a voting systems exists or not. The following
theorem excludes the existence of such a Boolean function.

Theorem 7.5. Let f : {+1,−1}n → {+1,−1} be a function with Ef = 0. Then there is
j with Infj(f) ≥ log n/n.

The proof of this theorem, which we do not present here, is based on the ideas we
developed above.

Other applications of the hypercontractivity inequality in theoretic computer science
that we do not cover here are in privacy amplification, bounding the degree of approxi-
mating polynomials and inapproximability results. A good reference to learn about these
results is the lecture notes of O’Donnell [5].
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8 Concentration of measure inequalities

Let Z be an arbitrary random variable. Applying Markov’v inequality on the random
variable (Z − E[Z])2 we find that

Pr[|Z − EZ| ≥ t] = Pr[(Z − EZ)2 ≥ t2] ≤ E[(Z − EZ)2]

t2
.

As a result

Pr[|Z − EZ| ≥ t] ≤ Var[Z]

t2
.

This inequality is called Chebyshev’s inequality, and is a concentration of measure in-
equality since it says that the probability that Z is far from its average is small assuming
that its variance is bounded. In other words, the probability mass of Z is concentrated
around its average.

Observe that if Z takes values only in the interval [a, b] then Var[Z] ≤ (b − a)2/4 so
by Chebyshev’s inequality we have

Pr[|Z − EZ| ≥ t] ≤ (b− a)2

4t2
.

Our goal in this section is to derive concentration of measure inequalities that are
tighter than Chebyshev’s inequality. Such stronger bounds on Pr[|Z − EZ| ≥ t] in
particular can be derived in the case where Z is of the form Z = f(x1, . . . , xn) for some
function f when xi’s are drawn independently from some distribution π on Ω.

To this end let us define

ψ(θ) = logE[eθ(Z−EZ)]. (23)

ψ(θ) is called the logarithmic moment-generation function of Z. It can be shown as an
exercise (e.g., using Hölder’s inequality) that ψ(θ) is a convex function. Then again by
Markov’s inequality for θ > 0 we have

Pr[Z − E[Z] ≥ t] = Pr[eθ(Z−EZ) ≥ eθt] ≤ e−(θt−ψ(θ)). (24)

In the above inequality we may optimize over the choice of θ > 0. For instance suppose
that

ψ(θ) ≤ cθ2, (25)

for some constant c > 0. Then we have

Pr[Z − E[Z] ≥ t] ≤ e−(θt−cθ2),

and optimizing the right hand side of (24) over θ, i.e., letting θ = t/2c, we arrive at

Pr[Z − E[Z] ≥ t] ≤ e−t
2/4c.

The following proposition summarizes the above computations.
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Lemma 8.1. Let Z be an arbitrary random variable and define ψ(θ) as in (23). Suppose
that for some constant c > 0 we have ψ(θ) ≤ cθ2 for all θ > 0. Then for all t ≥ 0 we
have

Pr[Z − E[Z] ≥ t] ≤ e−t
2/4c. (26)

We note that if Z is a Gaussian random variable with zero mean and variance σ2

then ψ(θ) = σ2θ2/2. Thus Lemma 8.1 can in particular be applied when Z is Gaus-
sian. Because of this, a random variable Z satisfying (26) is called to have Gaussian
concentration.

Hoeffding’s inequality: Let us give an example for illustrating a quadratic upper
bounds on ψ(θ). Assume that X1, . . . , Xn are i.i.d. random variables with zero-mean
E[Xi] = 0 and a ≤ Xi ≤ b. Let Z = (X1 + · · · + Xn)/

√
n. Our goal is to prove a

quadratic upper bound on ψ(θ) for this choice of Z. We compute

E
[
eθZ
]

= E
[∏

i

e
θ√
n
Xi
]

= E
[
e

θ√
n
X1

]n
. (27)

Now using the convexity of the exponential function we have

e
θ√
n
X1 ≤ b−X1

b− a
e

θ√
n
a

+
X1 − a
b− a

e
θ√
n
b
.

Taking expectation we find that

E
[
e

θ√
n
X1
]
≤ b

b− a
e

θ√
n
a

+
−a
b− a

e
θ√
n
b ≤ e

(b−a)2
8n

θ2 . (28)

We now need the following lemma whose proof can be found in Appendix B.

Lemma 8.2. For any p ∈ [0, 1] and x ∈ R we have

(1− p)e−px + pe(1−p)x ≤ e
x2

8 .

In the above lemma let p = −a/(b − a) and x = θ(b − a)/
√
n. Note that since

a ≤ X1 ≤ b and E[X1] = 0 we have a ≤ 0 ≤ b, and then p ∈ [0, 1]. Therefore, (28) gives

E
[
e

θ√
n
X1
]
≤ e

(b−a)2
8n

θ2 .

Putting all these together we arrive at1

ψ(θ) ≤ (b− a)2

8
θ2.

Thus by Lemma 8.1 we obtain the Hoeffding’s inequality

Pr
[X1 + · · ·+Xn√

n
≥ t
]
≤ e

− 2
(b−a)2

t2
. (29)

We used the special form of Z = (X1+· · ·+Xn)/
√
n in the first step (27). Nevertheless,

what we really need is a martingale type property there. A similar inequality as above
can be proven for martingales that is called Azuma’s inequality.

1This inequality is called Hoeffding’s lemma.

35



General case: Let us consider the more general case where Z = f(X1, . . . , Xn) is an
arbitrary function of i.i.d. Xi’s distributed according to π. For simplicity also assume
that EZ = 0. The idea is to use log-Sobolev inequalities for the function eθZ to prove a
quadratic upper bound on ψ(θ) defined in (23). This is called Herbst’s argument.

We have

Ent(eθZ) = θE[ZeθZ ]− E[eθZ ] logE[eθZ ] = θ
(
eψ(θ)

)′ − eψ(θ)ψ(θ).

Therefore,
Ent(eθZ)

θ2eψ(θ)
=
(ψ(θ)

θ

)′
.

As a result if we show that Ent(eθZ) ≤ cθ2eψ(θ), we conclude that(ψ(θ)

θ

)′
≤ c,

and then by integration we obtain the desired inequality ψ(θ) ≤ cθ2. As a summary,
the problem of proving Gaussian concentration reduces to the problem of proving upper
bounds of form cθ2eψ(θ) on Ent(eθZ). This is where log-Sobolev inequalities enter.

We use the 1-log-Sobolev inequality for the Dirichlet form

L =
n∑
i=1

(I − Êi)

where Ei is the expectation with respect to the i-th coordinate (with distribution π).
Let α1 = α1(L) = α1(I − E). Then letting Zi = f(X1, . . . X

′
i, . . . Xn) where X ′i is an

independent copy of Xi, we have

4α1 Ent(eθZ) ≤ E(θZ, eθZ) =
1

2

∑
i

E
[
(θZ − θZi)

(
eθZ − eθZi

)]
,

where the equality follows from (11). Now as an exercise one can verify that for every
a, b ∈ R we have

(b− a)(eb − ea) ≤ 1

2
(b− a)2(ea + eb).

Therefore,

4α1 Ent(eθZ) ≤ 1

4
θ2
∑
i

E
[
(Z − Zi)2

(
eθZ + eθZi

)]
=

1

2
θ2
∑
i

E
[
(Z − Zi)2eθZ

]
. (30)

Let us define
γ = max

x,x(1),...,x(n)

∑
i

(
f(x)− f(x(i)

)2
,

where the maximum is over all x = (x1, . . . , xn) and x(i) = (x
(i)
1 , . . . , x

(i)
n ) with the condi-

tion that x
(i)
j = xj for all i 6= j. Hence,

Ent(eθf ) ≤ γ

8α1

θ2eψ(θ).
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With the previous arguments we conclude that

ψ(θ) ≤ γ

8α1

θ2,

and then by Lemma 8.1

Pr[Z − E[Z] ≥ t] ≤ e−2α1t2/γ. (31)

We note that α2 ≤ α1. Therefore, the above argument also shows that

Pr[Z − E[Z] ≥ t] ≤ e−2α2t2/γ.

�

The above Gaussian concentration inequality, although useful in most applications, is
not as tight as Hoeffding’s inequality. Indeed, if we let Z = (X1 + · · · + Xn)/

√
n, where

Xi’s are i.i.d. with E[Xi] = 0 and a ≤ Xi ≤ b, then γ ≤ (b− a)2. On the other hand, we
know that α1(I − E) ≥ 1/4 for any distribution π. Putting these in (31) we arrive at

Pr[Z − E[Z] ≥ t] ≤ e
− t2

2(b−a)2 .

Here, comparing to (29), the exponent of the right hand side is not tight.

In the following we will use Herbst’s argument for proving a concentration of measure
inequality that is tighter than (31), and does imply Hoeffding’s inequality. Before working
on the general case, it is instructive to first consider the spacial case where Xi’s are binary
random variables with uniform distribution, i.e., π is the uniform distribution over the
binary set {+1,−1}. The point is that in this case we have α1(I − E) ≥ α2(I − E) =
1/2. Moreover, in this case, Z and Zi as defined above, are equal with probability 1/2.
Therefore, (30) can be rewritten as

2 Ent(eθZ) ≤ 1

4
θ2
∑
i

E
[
(Z − Z ′i)2eθZ

]
≤ 1

4
γθ2eψ(θ),

where Z ′i = f(X1, . . . , Xi−1,−Xi, Xi+1, . . . , Xn). This gives ψ(θ) ≤ 1
8
γθ2 and then

Pr[Z − E[Z] ≥ t] ≤ e−
2t2

γ .

We see in the above example of the uniform distribution over a binary set that a
more careful analysis gives a tighter concentration of measure inequality. In the following
to generalize this approach for arbitrary distributions, we use another inequality that
resembles 1-log-Sobolev inequalities [16] .

Theorem 8.3. Let X1, . . . , Xn be arbitrary independent random variables and let Z =
f(X1, . . . , Xn). Let Vi = gi(X1, . . . , Xi−1, Xi+1, . . . , Xn) be an arbitrary function of X1, . . . , Xn

except the i-th one. Then we have

Ent(eZ) ≤
n∑
i=1

E
[
`(Z − Vi)eZ

]
,

where `(x) = e−x + x− 1.

37



Proof. Using the subadditivity of the entropy function (Theorem 2.7) it suffices to prove
the theorem in the base case n = 1, i.e., for any random variable Z and any constant c
we have

Ent(eZ) ≤ E[`(Z − c)eZ ].

This is a simple calculus exercise. Define

h(c) = E
[
`(Z − c)eZ

]
= ec + E

[
ZeZ

]
− cE

[
eZ
]
− E

[
eZ
]
,

Observe that h(c) is a convex function which is minimized at c = lnE[eZ ]. Then for every
c we have

E[`(Z − c)eZ ] ≥ h
(

lnE[eZ ]
)

= Ent(eZ).

We are now ready to complete Herbst’s argument and prove McDiarmid’s inequality.

Theorem 8.4. Let X1, . . . , Xn be independent random variables. Let Z = f(X1, . . . , Xn)
where f is an arbitrary function and define

γ = max
x,x(1),...,x(n)

∑
i

(
f(x)− f(x(i)

)2
,

where the maximum is over all x = (x1, . . . , xn) and x(i) = (x
(i)
1 , . . . , x

(i)
n ) with the condi-

tion that x
(i)
j = xj for all i 6= j. Then we have

ψ(θ) ≤ γ

8
θ2,

where as before ψ(θ) is the logarithmic moment generation function given by (23). As a
result we have

Pr[Z − E[Z] ≥ t] ≤ e−
2t2

γ .

Proof. For simplicity assume that E[Z] = 0. Applying Herbst’s argument, it suffices to
show that for every θ we have Ent(eθZ) ≤ γ

8
θ2eψ(θ). To this end we use the inequality

of Theorem 8.3. For arbitrary random variables V1, . . . , Vn where Vi does not depend on
Xi, we have

Ent(eθZ) ≤
n∑
i=1

E
[
`
(
θZ − Vi

)
eθZ
]
,

where `(t) = e−t + t− 1. Define the random variables

Ai = inf
xi
f(X1, . . . , xi, . . . Xn), Bi = sup

xi

f(X1, . . . , xi, . . . Xn).

Since `(t) is a convex function we have

`(θZ − Vi) ≤ max
{
`(θAi − Vi), `(θBi − Vi)

}
.

On the other hand, letting

Vi = θAi + ln(θCi)− ln(1− e−θCi),
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where Ci = Bi − Ai we have

`(θAi − Vi) = `(θBi − Vi) =
θCi

1− e−θCi
+ ln

1− e−θCi
θCi

− 1.

We conclude that

Ent(eθZ) ≤
n∑
i=1

E
[
q(θCi)e

θZ
]
, (32)

where

q(t) =
t

1− e−t
+ ln

1− e−t

t
− 1.

We claim that for any t we have q(t) ≤ t2/8. To verify this recall that in Lemma 8.2
we showed that

ln
(

(1− p)e−pt + pe(1−p)t
)
≤ t2/8, ∀p ∈ [0, 1].

Optimizing this inequality over the choice of p and letting

p =
et − t− 1

t(et − 1)
∈ [0, 1],

we find that q(t) ≤ t2/8. Using this in (32) we obtain

Ent(eθZ) ≤ 1

8
θ2E
[( n∑

i=1

C2
i

)
eθZ
]
.

Now observe that by assumption
∑n

i=1C
2
i ≤ γ. Therefore,

Ent(eθZ) ≤ γ

8
θ2E
[
eθZ
]
,

as desired.

The above arguments are also valid in the continuous case.

Theorem 8.5. Let f : Rk → R be a 1-Lipschitz function, i.e., for all x ∈ Rk we have
|∇f(x)| ≤ 1. Then we have

Pr[f − E[f ] ≥ t] ≤ e−
t2

2 ,

where the probability and expectation are with respect to the k-dimensional standard nor-
mal distribution with density (16).
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Proof. For simplicity assume that E[f ] = 0. Applying Herbst’s argument, we need to
bound Ent(eθf ). Using the 1-log-Sobolev inequality (15) and its tensorization we have

Ent(eθf ) ≤ θ2

2
E
[
|∇f |2eθf

]
≤ θ2

2
E
[
eθf
]
,

where the second inequality follows from the assumption that f is 1-Lipschitz and then
|∇f |2 ≤ 1. The above inequality gives the desired result.

One can prove the above theorem using the central limit theorem and Theorem 8.4.

9 Transportation-cost inequalities

Concentration of measure inequalities are closely related to transportation-cost inequal-
ities. In this section we explain the notion of transportation-cost inequalities and their
connections to log-Sobolev inequalities. For a detailed study of the subject we refer
to [14].

Suppose that (Ω, d, π) is a metric probability space. For any two distributions µ, ν on
Ω, and p ≥ 1 we define the p-Wasserstein distance between µ, ν by

Wp(µ, ν) := inf
ξ

( ∑
x,y∈Ω

ξ(x, y)dp(x, y)
)1/p

, (33)

where infimum is over all distribution ξ on Ω×Ω whose marginals are µ and ν, i.e., over
all couplings of µ, ν. It can be shown that Wp(·, ·) is indeed a metric on the space of
distributions, and that

Wp(µ, ν) ≤ Wq(µ, ν), ∀1 ≤ p ≤ q. (34)

The problem of computing the Wasserstein distance W p
p (µ, ν) is an optimization of a

linear function on ξ with linear constraints, i.e., it is a linear program. Thus using the
strong duality of linear programs one can express W p

p (µ, ν) as a maximization problem.
The result would be the following theorem called Kantorovich duality.

Theorem 9.1. For every two measure µ, ν and p ≥ 1 we have

W p
p (µ, ν) = sup

{
Eµ[g] + Eν [h] : g(x) + h(y) ≤ dp(x, y) ∀x, y

}
. (35)

In the case of p = 1 we can further simplify the above formula. The following theorem
is called the Kantorovich-Rubinstein theorem.

Theorem 9.2. For every µ, ν we have

W1(µ, ν) = sup
f :1-Lipschitz

∣∣Eµ[f ]− Eν [f ]
∣∣,

where supremum is taken over all 1-Lipschitz functions f : Ω→ R.
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Proof. By Theorem 9.1 we have

W1(µ, ν) = sup
{
Eµ[g] + Eν [h] : g(x) + h(y) ≤ d(x, y) ∀x, y

}
. (36)

Take optimal functions g, h in the above optimization. Define

f(x) := inf
y
d(x, y)− h(y).

Since g(x) + h(y) ≤ d(x, y) we have f(x) ≥ g(x). Moreover, f(x) ≤ d(x, x) − h(x) ≤
−h(x). Then we have

Eµ[g] + Eν [h] ≤ Eµ[f ]− Eν [f ].

It is also easy to show that f is 1-Lipschitz. Therefore,

W1(µ, ν) ≤ sup
f :1-Lipschitz

∣∣Eµ[f ]− Eν [f ]
∣∣.

Inequality in the other direction follows once in (36) we put g = −h = f in which case
g(x) + h(y) ≤ d(x, y) would reduce to f being 1-Lipschitz.

Definition 9.3. A metric probability space (Ω, d, π) is called to satisfy the p-transportation-
cost inequality with constant c > 0 (also called the p-Talagrand inequality) denoted by
Tp(c) if for every distribution µ we have

Wp(µ, π) ≤
√

2cD(µ‖π),

where as before, D(µ‖π) is the KL-divergence (7).

Observe that because of (34), Tq(c) implies Tp(c) if 1 ≤ p ≤ q.

Example: Consider the metrix d(x, y) = 1 − δx,y. Then as an exercise one can verify
that

W1(µ, ν) = ‖µ− ν‖TV.

Then, by Pinsker’s inequality (19) we have

W1(µ, π) ≤
√

1

2
D(µ‖π).

This means that for any π the space (Ω, d, π) satisfies T1(1/4). �

A crucial observation in the study of transportation-cost inequalities is the Donsker-
Varadhan formula:

D(µ‖π) = sup
f

Eµ[f ]− lnEπ[ef ],

where the supremum is over all functions f : Ω → R. This formula essentially says that
the convex conjugate or Legendre transform of the convex function µ 7→ D(µ‖π) is equal
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to the convex function f 7→ lnEπ[ef ]. Since applying the Legendre transform on a nice
function twice, we get the starting function itself, we also have

lnEπ[ef ] = sup
µ

Eµ[f ]−D(µ‖π). (37)

Now that according to Theorem 9.1 and the Donsker-Varadhan formula we have vari-
ational expressions for both sides of a transportation-cost inequality, we can derive their
dual equivalent version. The following two theorems are due to Bobkov and Götze [6].

Theorem 9.4. (Ω, d, π) satisfies T1(c) if and only if for every 1-Lipschitz function f :
Ω→ R with Eπ[f ] = 0 we have

ψ(θ) ≤ c

2
θ2,

where ψ(θ) = logE[eθf ]. In particular, T1(c) implies that

Pr[f − E[f ] ≥ t] ≤ e−
t2

2c ,

for all 1-Lipschitz functions f .

Proof. By the Kantorovich-Rubinstein formula (Theorem 9.2) transportation-cost in-
equality T1(c) holds iff

Eµ[f ]− Eπ[f ] ≤
√

2cD(µ‖π),

for all 1-Lipschitz functions f . Moreover, we have√
2cD(µ‖π) ≤ cθ

2
+
D(µ‖π)

θ
, ∀θ > 0,

and equality holds for some θ > 0. Therefore, T1(c) holds iff

Eµ[f ]− Eπ[f ] ≤ cθ

2
+
D(µ‖π)

θ
,

for all 1-Lipschitz f and θ > 0. Since this inequality holds for all probability distributions
µ we find that T1(c) is equivalent to

sup
µ

Eµ[θf ]−D(µ‖π) ≤ cθ2

2
+ θEπ[f ]

Using the dual of the Donsker-Varadhan formula (37) we find that T1(c) is equivalent to

lnEπ[eθf ] ≤ cθ2

2
+ θEπ[f ],

being satisfied for all 1-Lipschitz f and θ > 0.
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By this theorem the connection between log-Sobolev inequalities and transportation-
cost inequalities will be clear. We saw previously that log-Sobolev inequalities can be used
to prove quadratic upper bounds on the logarithmic moment generation functions. The
above theorem says that such bounds give transportation-cost inequalities, so log-Sobolev
inequalities imply transportation-cost inequalities. In particular, the above theorem,
together with Theorem 8.4 imply Pinsker’s inequality.

Corollary 9.5. The metric probability space (Ωn, d1,n, π
n) with

d1,n(xn, yn) =
n∑
i=1

(1− δxi,yi)

satisfies T1(n/4).

Proof. In Theorem 8.4 we showed that for every function f on Ωn we have

ψ(θ) ≤ γ

8
θ2,

with
γ = max

x,x(1),...,x(n)

∑
i

(f(x)− f(x(i))2.

where the maximum is over all x = (x1, . . . , xn) and x(i) = (x
(i)
1 , . . . , x

(i)
n ) with the con-

dition that x
(i)
j = xj for all i 6= j. Now the point is that if f : Ωn → R is 1-Lipschitz

(with respect to the above metric) then γ ≤ n. Then the desired result follows from the
previous theorem.

The constant of the transportation-cost inequality given by the above corollary scales
with n. Nevertheless, in certain settings one can derive transportation-cost (and then
concentration of measure) inequalities that do not depend on n. To explore this let us
first compute a dual formulation for T2 inequalities.

Theorem 9.6. Let (Ω, d, π) be a metric probability space. Then the followings are equiv-
alent:

(i) (Ω, d, π) satisfies T2(c) inequality for some c > 0.

(ii) For all functions g, h with g(x) + h(y) ≤ d2(x, y) we have

lnEπ[e
1
2c
h] ≤ − 1

2c
Eπ[g].

Proof. The proof is similar to that of Theorem 9.4. By the Kantorovich duality, (i) is
equivalent to

Eµ[h] + Eπ[g] ≤ 2cD(µ‖π),

for all distributions µ and functions g, h such that g(x)+h(y) ≤ d2(x, y),∀x, y. Optimizing
over µ and using (37) we obtain the equivalent formulation (ii).
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The dual formulations of T1 and T2 inequalities given by Theorem 9.4 and Theorem 9.6
can easily be extended to all 1 ≤ p ≤ 2.

Theorem 9.7. Let (Ω, d, π) be a metric probability space and 1 < p < 2. Then the
followings are equivalent:

(i) (Ω, d, π) satisfies Tp(c) inequality for some c > 0.

(ii) For all functions g, h with g(x) + h(y) ≤ dp(x, y) we have

lnEπ[e
t
pc
h] ≤ − t

pc
Eπ[g] +

2− p
2pc

t
2

2−p , ∀t ≥ 0.

Proof. Use Young’s inequality

a
2
p = sup

t≥0

2

p
at− 2− p

p
t

2
2−p ,

and follow similar steps as in the proofs of Theorem 9.4 and Theorem 9.6.

Similar to log-Sobolev inequalities, transportation-cost inequalities also enjoy a ten-
sorization property. The following theorem can be proven directly using properties of
p-norms or using the dual formulations of Tp inequalities given by the above theorems.
We leave its proof as an exercise for the reader.

Theorem 9.8. Suppose that (Ω, d, π) satisfies Tp(c) for some 1 ≤ p ≤ 2. Then for every
n the space (Ωn, dp,n, π

n) satisfies Tp(cn
2/p−1) where

dp,n(xn, yn) :=
( n∑
i=1

dp(xi, yi)
)1/p

. (38)

The above theorem, in particular says that T2(c) for space (Ω, d, π) gives T2(c) for
(Ωn, d2,n, π

n). That is, T2 inequalities are dimension-free, so one may obtain dimenstion-
free concentration of measure inequalities out of them.

Theorem 9.9. [7] Let (Ω, d, π) be a metric probability space. Then the followings are
equivalent:

(i) (Ω, d, π) satisfies T2(c) inequality for some c > 0.

(ii) For all n and all functions f : Ωn → n that are 1-Lipschitz with respect to the norm
d2,n defined in (38) we have ψ(θ) ≤ cθ2/2 and then

Pr
[
f − Eπ[f ] ≥ t

]
≤ e−

t2

2c .

Going from (i) to (ii) is easy: first use the tensorization property of T2 inequalities,
and then the fact that 1-Wasserstein distance is dominated by 2-Wasserstein distance.
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Finally use Theorem 9.4. Proof of the other direction is more involved for which we refer
to [7].

Now the question is how we can prove T2 transportation-cost inequalities. In the
following we will show that in certain situations 1-log-Sobolev inequalities imply T2 in-
equalities and then dimension-free concentration of measure inequalities. The following
theorem is due to Otto and Villani.

Theorem 9.10. Let π be a probability measure on Rk. Suppose that π satisfies the
following 1-log-Sobolev inequality

4α1 Entπ(ef ) ≤
∫
Rk
|∇f |2efdπ. (39)

Then (Rk, d, π), where d(x,y) = |x − y| =
(∑

i(xi − yi)
2
)1/2

is the Euclidean norm,

satisfies T2(1/2α1).

We called (39) a 1-log-Sobolev inequality since it is associated with the Lindblad oper-
ator L = ∇V ·∇−∆ that is reversible with respect to π when dπ = e−V dx (see (17)). As
an exercise one can verify that the 1-log-Sobolev inequality associated with the Lindblad
operator has the form (39).

Proof. We will present two proofs for this theorem.

First proof (sketch): We know that 1-log-Sobolev inequalities imply Gaussian concen-
tration of measure inequalities. On the other hand, 1-log-Sobolev inequalities have the
tensorization property. Thus, πn as a distribution on Rnk satisfies concentration of mea-
sure inequality with respect to the Euclidean norm, that is dimension-free. Then the
desired result follows from Theorem 9.9.

Second proof: The above proof is based on Theorem 9.9 whose proof is non-trivial and
is not presented in this manuscript. So we present a self-contained proof here.

For every f : Rk → R we define

Qtf(x) = inf
y∈Rk

f(y) +
1

t
|x− y|2, t > 0, Q0f = f. (40)

It is well-known that (t,x) 7→ Qtf(x) is a solution of the Hamilton-Jacobi equation:{
∂
∂t
u+ 1

4
|∇xu|2 = 0, t ≥ 0,x ∈ Rk

u(0,x) = f(x), x ∈ Rk.
(41)

The formula (40) as a solution of the above differential equation is called the Hopf-Lax
formula and is proven in Appendix C. We also show there that {Qt : t ≥ 0} forms a
semigroup.

Now for a fixed t ≥ 0, we apply the given 1-log-Sobolev inequality to the function
x 7→ α1tQtf(x):

Entπ
(
eα1tQtf

)
≤ 1

4α1

∫
Rk
|∇xα1tQtf(x)|2eα1tQtf(x)dπ = −α1t

2

∫
Rk

( ∂
∂t
Qtf(x)

)
eα1tQtf(x)dπ,

(42)
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where equality follows from (41). Define

ϕ(t) := E
[
eα1tQtf

]
=

∫
Rk
eα1tQtf(x)dπ.

Using (42) we have

tϕ′(t) = E
[
α1tQtfe

α1tQtf
]

+ α1t
2E
[( ∂
∂t
Qtf(x)

)
eα1tQtf

]
= Ent

(
eα1tQtf

)
+ ϕ(t) lnϕ(t) + α1t

2E
[( ∂
∂t
Qtf(x)

)
eα1tQtf

]
≤ ϕ(t) lnϕ(t).

This implies that
d

dt

( lnϕ(t)

t

)
≤ 0,

and then

lnE
[
eα1Q1f

]
= lnϕ(1) ≤ lim

t→0+

lnϕ(t)

t
= lim

t→0+

ϕ′(t)

ϕ(t)
= α1E[f ]. (43)

Now in order to prove T2(1/2α1) we use its equivalent characterization given by Theo-
rem 9.6. Let g, h be two functions satisfying g(x) + h(y) ≤ |x− y|2. Then

h(y) ≤ inf
x
−g(x) + |y − x|2 = Q1(−g)(y).

As a result, using (43) for f = −g we have

lnE
[
eα1h

]
≤ lnE

[
eα1Q1(−g)

]
≤ −α1E[g].

This gives the desired result.

The above theorem has been generalized for other metric spaces, particularly to dis-
crete ones. We refer the reader to [8, 9, 10, 11, 13] and references therein for such
generalizations.

Since we already know that α1 ≥ 1/2 for the standard normal distribution we obtain
the following.

Corollary 9.11. (Talagrand’s inequality) The Euclidian space Rk with the multi-dimensional
standard normal distribution satisfies T2(1).

We also point out here that the second proof of Theorem 9.10 gives the following
hypercontractivity inequality.

Theorem 9.12. [17] Let π be a probability measure on Rk. Then the 1-log-Sobolev
inequality

4α1 Entπ(ef ) ≤
∫
Rk
|∇f |2efdπ, (44)

holds for all function f if and only if for any p ≥ 0 and any function f we have∥∥eQtf∥∥
p+tα1

≤ ‖ef‖p, ∀t ≥ 0

where Qtf is defined in (40).
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Observe that inequality (43) that we showed in the proof of Theorem 9.10 is the
special case of the above theorem for t = 1 and p = 0.

Proof. Define
G(t) = ln ‖eQtf‖p(t),

with p(t) = p+ α1t. Then we have

1

α1

p(t)2eG(t)G′(t) = Entπ
(
ep(t)Qtf

)
− 1

4α1

E
[
|∇
(
p(t)Qtf

)
|2ep(t)Qtf

]
≤ 0.

Then if the 1-log-Sobolev inequality (44) holds, we have G′(t) ≤ 0 for all t ≥ 0. Therefore,
for every t ≥ 0 we have

G(t) ≤ G(0) = ln ‖ef‖p.

Conversely, letting p = 1, if G(t) ≤ G(0) for all t ≥ 0, we have G′(0) ≤ 0 which is
equivalent to the desired log-Sobolev inequality.

10 Isoperimetric inequalities

Isoperimetric inequalities are inequalities that bound the surface area of a set from below
in terms of its volume. Here we start with Harper’s edge isoperimetric inequality in the
hypercube, and explain its connection to log-Sobolev inequalities.

Theorem 10.1. Let A ⊆ {0, 1}n be arbitrary and define E(A,Ac) to be the set of edges
from A to its complement in the Boolean hypercube. Then we have

|E(A,Ac)| ≥ |A| · (n− log2 |A|).

Moreover, equality holds if A is a sub-hypercube.

We do not have a proof of this theorem using log-Sobolev inequalities. Nevertheless,
loosing a factor of ln 2, a weaker version of this isoperimetric inequality easily follows
from log-Sobolev inequalities.2

Proof of a waker version. Let f be the indicator function of the set A. Consider the
Lindblad operator L =

∑
i(I − Êi) as before in (22) in which expectations are with

respect to the uniform distribution. Recall that α2(L) = α2(I − E) = 1/2. Therefore,

1

2
Ent(f 2) ≤ E[fLf ] =

1

2

∑
i

E
[(
f(X)− f(Xi)

)2]
,

2A proof of this theorem can be derived by a simple induction on n and using the inequality

(x + y) log2(x + y) ≥ x log2 x + y log2 y + 2 min{x, y}.
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where Xi is obtained from X by randomly changing its i-th coordinate. Since f and then
f 2 takes values in {0, 1} we have

Ent(f 2) = −|A|
2n

ln
|A|
2n
,

and ∑
i

E
[(
f(X)− f(Xi)

)2]
=

1

2n
|E(A,Ac)|.

Putting these together we arrive at

|E(A,Ac)| ≥ ln 2 · |A|(n− log2 |A|).

Let us now state another inequality, known as the blowing-up lemma. This lemma
was first proved by Margulis [25]. Here we present a simpler proof due to Marton [26].

Theorem 10.2 (Blowing-up lemma). Let Ω be an arbitrary finite set, and let A ⊆ Ωn be
a subset. Define

Ar = {x ∈ Ωn : dH(x,A) ≤ r},

where as before dH(x, y) =
∑n

i=1(1 − δxi,yi) is the Hamming distance and dH(x,A) =
miny∈A dH(x, y). Suppose that

r ≥ (1 + ε)

√
n

2
log
|Ω|n
|A|

,

where ε > 0. Then we have

|Ar| ≥ |Ω|n
(

1− e−ε2 log(|Ωn|−|A|)
)
.

To understand the content of this theorem let us assume that |A| = c|Ω|n for some
constant c > 0, i.e., the size of A ⊆ Ωn is a constant fraction of |Ωn|. Then the theorem
says that as long as r ≥ (1 + ε)

√
(n log 1/c)/2 we have

|Ar| ≥ |Ωn|(1− eε2 log 1/c).

In other words, although |A| could be a constant fraction of |Ωn|, the size of its r-
neighborhood for r = O(

√
n), is almost equal to the size Ωn.

Proof. Let us equip the space Ω with the uniform distribution denoted by π. As men-
tioned before, by Pinsker’s inequality, (Ω, d, π) with d(x, y) = 1 − δx,y satisfies T1(1/4).
Then using the tensorization of Talagrand’s inequalities (Theorem 9.8) or Corollary 9.5
the space (Ωn, dH , π

n) satisfies T1(n/4). That is for any distribution µ on Ωn we have

W1(µ, πn) ≤
√
n

2
D(µ‖πn).
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Let us assume that µ = µA is the conditional measure supported on A defined by

µA(x) =

{
1
|A| , x ∈ A
0. otherwise.

Then a simple computation verifies that

D(µA‖πn) = log
1

πn(A)
= log

|Ωn|
|A|

.

Putting in the Talagrand’s inequality we obtain

W1(µA, π
n) ≤

√
n

2
log

1

πn(A)
.

Using the triangle inequality and the above inequality twice we have

W1(µA, µAcr) ≤ W1(µA, π
n) +W1(µAcr , π

n) ≤

√
n

2
log

1

πn(A)
+

√
n

2
log

1

πn(Acr)
,

where Acr = Ωn \ A is the complement of Ar.

The next step is to give a lower bound on W1(µA, µAcr). Suppose that ξ(x, y) is a
coupling of µA and µAcr . Since µA is supported on A only and the marginal of ξ on the
first coordinate equals µA we have ξ(x, y) = 0 for all x /∈ A. Similarly we have ξ(x, y) = 0
for all y /∈ Acr. Therefore,∑

x,y∈Ωn

ξ(x, y)dH(x, y) =
∑

x∈A,y∈Acr

ξ(x, y)dH(x, y) ≥ r,

where in the last step we use the fact that for all (x, y) ∈ A× Acr we have dH(x, y) ≥ r.

r ≤

√
n

2
log

1

πn(A)
+

√
n

2
log

1

πn(Acr)
.

Rearranging this inequality and using πn(Acr) = 1− πn(Ar) we obtain the desired result.

Observe that as the above proof shows, a similar inequality can be stated for any
distribution π and not just the uniform distribution.

We now turn to the Gaussian isoperimetric inequality in Rk. Recall that the standard
normal distribution on Rk has the density

dπ(x) =
1

(2π)k/2
e−
|x|k
2 dx.

That is the volume of a Borel set A with respect to this measure is given by

π(A) =
1

(2π)k/2

∫
A

e−
|x|k
2 dx.
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We also define the r-Euclidean open neighborhood of A by

Ar :=
{
x ∈ Rk : |x−A| < r

}
,

where |x − A| = infy∈y |x − y| is the Euclidean distance of x from A. The Gaussian
surface measure of a Borel set A is defined by

πs(∂A) := lim inf
r→0+

π(Ar)− π(A)

r

To state the main theorem let

ϕ(x) :=
1√
2π
e−

x2

2 , Φ(x) =

∫ x

−∞
ϕ(y)dy,

be the density and cumulative distribution function of the one-dimensional standard
normal distribution.

Theorem 10.3. For any Borel set A ⊆ Rk we have

πs(∂A) ≥ ϕ ◦ Φ−1(π(A)), (45)

and equality holds if A is a half-space.

Let us first examine the equality case. Fix some vector u ∈ Rk with |u| = 1 define
the half-space

Ha = {x ∈ Rk : 〈x,u〉 < a},

where 〈x,u〉 is the Euclidean inner product. Using the rotation invariance of Gaussian
distributions, we see that π(Ha) is independent of the choice of u, and for u = (1, 0, · · · , 0)
it is not hard to verify that π(Ha) = Φ(a) and

πs(∂Ha) = lim
r→0+

π(Ha+r)− π(Ha)

r
= Φ′(a) = ϕ(a).

Therefore, (45) turns to an equality for Ha. In other words, half-spaces have minimal
Gaussian surface areas.

A functional version of Theorem 10.3 has been derived by Bobkov [15].

Theorem 10.4. For every Lipschitz function f : Rk → [0, 1] we have

Ψ
(∫

Rk
fdπ

)
≤
∫
Rk

√
Ψ2(f) + |∇f |2 dπ, (46)

where Ψ = ϕ ◦ Φ−1.

The above theorem easily gives (45). The idea is to let f to be the characteristic
function of the set A. Note however that the the characteristic function is not Lipschitz,
so in (46) we pick

fr(x) := max
{

1− 1

r
|x− A|, 0

}
,
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and then take the limit of r → 0+. Assuming that A is a nice set, fr tends to the
characteristic function of A, and then Ψ ◦ fr tends to 0 since Ψ(0) = Ψ(1) = 0. We then
obtain

Ψ(π(A)) ≤ lim inf
r→0+

∫
Rk
|∇fr|dπ.

On the other hand, fr is constant on A and on Rk \ Ar. Thus ∇fr is zero on A and on
Rk \ Ar. Moreover, from the definition we have |∇fr| ≤ 1/r on Ar \ A. Therefore,

Ψ(π(A)) ≤ lim inf
r→0+

∫
Rk
|∇fr|dπ ≤ lim inf

r→0+

π(Ar)− π(A)

r
= πs(∂A).

�

We now turn to the the proof of Theorem 10.4. The original proof of Bobkov [15]
of this theorem is by first stating a discrete version of it, and then based on the central
limit theorem, generalizing it to the Gaussian case (similarly to the second proof of
Theorem 5.5). Here we given another proof, which although is not based on log-Sobolev
or hypercontractivity inequalities, is based on the properties of the Ornstein-Uhlenbeck
semigroup.

Proof of Theorem 10.4. Let f : Rk → [0, 1] be sufficiently smooth. Let Tt denote the
Ornstein-Uhlenbeck semigroup given by (12). Define

J(t) :=

∫
Rk

√
Ψ2(Ttf) + |∇Ttf |2 dπ.

J(0) equal the right hand side of (46). Moreover, since Ttf tends to the constant function
m =

∫
Rk fdπ as t→∞, we have

lim
t→∞

J(t) =

∫
Rk

Ψ(m)dπ.

Then the desired inequality is equivalent to J(∞) ≤ J(0). For this it suffices to show
that J(t) is a non-increasing function, i.e., J ′(t) ≤ 0. In the following, for simplicity of
presentation we assume that k = 1, and prove J ′(t) ≤ 0. The proof for arbitrary k is
identical.

Recall that the generator of the Ornstein-Uhlenbeck semigroup is Lg(x) = xg′(x) −
g′′(x). For simplicity of notation let Kf(x) = Ψ2(f(x)) + |f ′(x)|2 and Ttf = ft. We then
have

J ′(t) =

∫
R

1√
Kft(x)

(
− Lft(x) ·Ψ′(ft(x)) ·Ψ(ft(x))− f ′t(x) · Lf ′t(x)

)
dπ

Now recall that in Lemma 5.3 we showed that∫
R
g(x) · Lh(x)dπ =

∫
R
g′(x)h′(x)dπ.
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Using this and the facts that

(Kft)
′(x) = 2f ′t(x) ·Ψ′(ft(x)) ·Ψ(ft(x)) + 2f ′t(x) · f ′′t (x),

and Ψ(y) ·Ψ′′(y) = −1 which can be proven as an exercise, we find that

J ′(t) = −
∫
R

1

Kft(x)3/2

(
Ψ′(ft(x))f ′2t −Ψ(ft(x))f ′′t (x)

)2

dπ ≤ 0.

We are done.

We present yet another connection between log-Sobolev inequalities and isoperimetric
inequalities. We show that how the Brunn-Minkowski inequality gives a proof of log-
Sobolev inequality associated to Gaussian measures and in fact to all measures satisfying
the Bakry-Emery criterion (see Theorem 5.7).

The Brunn-Minkowski inequality states that for any two compact subsets A,B ⊂ Rk

we have
Vol(A)1/k + Vol(B)1/k ≤ Vol(A+B)1/k,

where Vol(A) denotes the volume of the set A with respect to the Lebesgue measure:
Vol(A) =

∫
A

dx, and A+B is the Minkowski sum:

A+B = {x + y : x ∈ A,y ∈ Y }.

Before continuing let us derive an isoperimetric inequality using the Brunn-Minkowski
inequality. Let Bε = Bε(0) be the ball of radius ε > 0 around the origin. We have
Vol(Bε) = εkVol(B1). Moreover, Aε = A + Bε is the ε-neighborhood of A. Then the
Brunn-Minkowski inequality gives

Vol(A)1/k + εVol(B1)1/k ≤ Vol(Aε)
1/k,

and equivalently
1

ε

(
Vol(Aε)

1/k − Vol(A)1/k
)
≥ Vol(B1)1/k.

Taking the limit ε→ 0+ we obtain

Area(∂A) ≥ kVol(B1)1/k Vol(A)1−1/k, (47)

where

Area(∂A) = lim
ε→0+

Vol(Aε)− Vol(A)

ε
,

is the surface area of A. Thus (47) bounded the surface area of a set in terms of its
volume and is an isoperimetric inequality.

Now let us turn in to the proof of the Brunn-Minkowski inequality. We first state and
prove a functional version of the Brunn-Minkowski inequality called the Prékopa-Leindler
inequality.
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Theorem 10.5. Let u, v, w : Rk → [0,+∞) be measurable functions such that for some
θ ∈ (0, 1) we have

w(θx + (1− θ)y) ≥ u(x)θv(y)1−θ, ∀x,y.

Then we have ∫
Rk
w(x)dx ≥

(∫
Rk
u(x)dx

)θ(∫
Rk
v(x)dx

)1−θ
.

By a change of variable the above theorem can be written as follows. Suppose that

w(x + y) ≥ u(x)θv(y)1−θ, ∀x,y. (48)

Then we have∫
Rk
w(x)dx ≥ 1

θkθ(1− θ)k(1−θ)

(∫
Rk
u(x)dx

)θ(∫
Rk
v(x)dx

)1−θ
. (49)

Let w, u, v be the characteristic functions of the set A+B,A,B respectively. Then (48)
holds for all θ ∈ (0, 1) from the definitions. Then for all θ ∈ (0, 1) we have we find that

Vol(A+B) ≥ 1

θkθ(1− θ)k(1−θ) Vol(A)θVol(B)1−θ.

Optimizing over the choice θ and letting

θ =
Vol(A)1/k

Vol(A)1/k + Vol(B)1/k
,

the Brunn-Minkowski inequality is obtained.3

Proof of Theorem 10.5. We prove the equivalent formulation of the theorem given by
equations (48) and (49). We sketch a proof by induction on k. For k = 1 we note that
for any non-negative function f∫

R
f(x)dx =

∫ ∞
0

Vol
(
Lf (t)

)
dt,

where Lf (t) = f−1(t,∞). Then (48) says that

Lw(t) ⊇ Lu(t) + Lv(t), ∀t ∈ R.

Therefore, by the 1-dimensional Brunn-Minkowski inequality, whose proof is easy, we
have

Vol(Lw(t)) ≥ Vol(Lu(t) + Lv(t)) ≥ Vol(Lu(t)) + Vol(Lv(t)).

Integrating over t we obtain∫
R
w(x)dx ≥

∫
R
u(x)dx+

∫
R
v(x)dx ≥ 1

θθ(1− θ)1−θ

(∫
R
u(x)dx

)θ(∫
R
v(x)dx

)1−θ
,

3Another proof of the Brunn-Minkowski inequality can be derived from the convexity of certain
functions over the space of probability measures equipped with the 2-Wasserstein distance.
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where for the second inequality we use θa+ (1− θ)b ≥ aθ + b1−θ.

For the induction step we use a tensorization type argument. For any x, y, z ∈ R
define ux, vy, wz : Rk−1 → R by

ux(x) := u(x,x), vy(y) := u(y,y), wz(z) := u(z, z).

These functions satisfy the assumption (48). Then by the induction hypothesis we have∫
Rk−1

wx+y(x)dx ≥ 1

θ(k−1)θ(1− θ)(k−1)(1−θ)

(∫
Rk−1

ux(x)dx
)θ(∫

Rk−1

vy(x)dx
)1−θ

.

This means that the functions

w̃(z) = θ(k−1)θ(1− θ)(k−1)(1−θ)
∫
Rk−1

wz(x)d,

and

ũ(x) =

∫
Rk−1

ux(x)dx, ṽ(y) =

∫
Rk−1

vy(x)dx,

defined on R satisfy (48). Then the desired result follows from the theorem for k = 1.

We now prove a log-Sobolev inequality from the Brunn-Minkowski inequality and its
functional version from [17].

Proof of Theorem 5.7. For a function g : Rk → R and t > 0 define

u(x) = e
1
θ
Qtg(x)−V (x), v(x) = e−V (x), w(x) = eg(x)−V (x),

where θ = 2/(2 + ct) ∈ (0, 1) and Qtg is given by (40). From the definitions for every
x,y we have

Qtg(x) ≤ g(θx + (1− θ)y) +
1

t

∣∣x− (θx + (1− θ)y)
∣∣2

= g(θx + (1− θ)y) +
cθ(1− θ)

2
|x− y|2.

On the other hand, since by assumption Hess(V ) ≥ cI we have

θV (x) + (1− θ)V (y)− V (θx + (1− θ)y) ≥ cθ(1− θ)
2

|x− y|2.

Putting these together we find that

Qtg(x)− θV (x)− (1− θ)V (y) ≤ g(θx + (1− θ)y)− V (θx + (1− θ)y),

which is equivalent to
u(x)θv(y)1−θ ≤ w(θx + (1− θ)y).

They by Theorem 10.5 we have∫
Rk
w(x)dx ≥

(∫
Rk
u(x)dx

)θ(∫
Rk
v(x)dx

)1−θ
,
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which can be written as
Eπ[eg] ≥ Eπ[e

1
θ
Qtg]θ.

This means that
‖eg‖1 ≥ ‖eQtg‖1+ c

2
t, ∀t ≥ 0.

Then by Theorem 9.12 we have

2cEntπ(eg) ≤
∫
Rk
|∇g|2egdπ.

Letting g = 2 ln f we obtain the desired log-Sobolev inequality.

A related inequality to isoperimetric inequalities is the Loomis-Whitney inequality
which in its special form states that for every measurable set A in Rk we have

Vol(A) ≤
k∏
i=1

Vol(Ai)
1/(k−1),

where Ai is the (k−1)-dimensional projection of A in the direction of the i-th coordinate,
one and Vol(Ai) is the (k− 1)-dimensional volume of Ai. The Loomis-Whiney inequality
itself is a special case of the Brascamp-Lieb inequality.

11 Markov semigroups as gradient flows

In this section we show that the flow generated by a Markov semigroup on the space of
probability measures can be thought of as a gradient flow when the space of probability
measures is equipped with the 2-Wasserstein distance. This idea is originated in the
seminal work of Otto [22].

In this section we restrict ourself to the Ornstein-Uhlenbeck semigroup associated to
dπ = e−V dx, i.e., L = ∇V · ∇ − ∆. Recall that the space of real functions on Rk is
equipped with the inner product

〈f, g〉π =

∫
Rk
f(x)g(x)dπ(x).

Moreover, L is reversible with respect to π, i.e.,

〈f,Lg〉π = 〈Lf, g〉π = 〈∇f,∇g〉π =

∫
Rk
∇f · ∇g dπ.

We will also use the notation 〈·, ·〉 with any subscript to denote the inner product with
respect to the Lebesgue measure:

〈f, g〉 =

∫
Rk
f(x)g(x)dx. (50)
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We will also frequently use the fact that div and −∇ are adjoints of each other with
respect to this inner product, i.e., using integration by parts we have

〈f, div(g)〉 =

∫
Rk
fdiv(g)dx = −

∫
Rk
∇f · g dx = −〈∇f, g〉. (51)

Finally for simplicity of notation we use ∂t = ∂/∂t and for 1 ≤ i ≤ k we denote ∂i = ∂/∂xi

Let µt be a sufficiently smooth curve in the space of probability measures on Rk that
are absolutely continuous with respect to π and let

dµt = ftdπ. (52)

Since µt’s are probability measures, the integral of ∂tµt over the whole space is zero. Thus
∂µt can be written as the divergence of some function: ∂tµt = −div(at). Next we may
write at = µtbt and ∂tµt = −div(µtbt). This equation does not uniquely determines bt.
However, we may choose the shortest such function bt with respect to the inner product

〈bt, bt〉µt =

∫
Rk
|bt|2dµt.

It is not hard to verify that such a shortest vector must be orthogonal, with respect to
the above inner product, to all function ct with div(µtct) = 0. Thus, using (51), such a
bt can itself be written as the gradient of another function bt = ∇ψt:

∂tµt = −div(µt∇ψt).

With this equation in mind, we may equip the space of probability measures with a
Riemannian structure. We say that the tangent vector to the above curve at point µt is
∇ψt with norm

〈∇ψt,∇ψt〉µt =

∫
Rk
|∇ψt|2dµt. (53)

Benamou-Brenier formula: Let {µt : 0 ≤ t ≤ 1} be an arbitrary curve in the space
of probability measures determined by

∂µt = −div(µt∇ψt).

Then the length of this curve, under the Riemannian metric (53) equals∫ 1

0

〈∇ψt,∇ψt〉1/2µt dt =

∫ 1

0

(∫
Rk
|∇ψt|2dµt

)1/2

dt.

Moreover, the geodesic distance between two probability measures µ0, µ1 is given by

inf
{µt:0≤t≤1}

{∫ 1

0

(∫
Rk
|∇ψt|2dµt

)1/2

dt : ∂tµt = −div(µt∇ψt)

}
.
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It is well-known that the above equation is equal to the squared of 2-Wasserstein distance
between µ0, µ1 with respect to the Euclidean metric and is called the Benamou-Brenier
formula:

W2(µ0, µ1) = inf
{µt:0≤t≤1}

{∫ 1

0

(∫
Rk
|∇ψt|2dµt

)1/2

dt : ∂tµt = −div(µt∇ψt)

}
.

Moreover, since geodesics have constant speed4 we also have

W 2
2 (µ0, µ1) = inf

{µt:0≤t≤1}

{∫ 1

0

∫
Rk
|∇ψt|2dµtdt : ∂tµt = −div(µt∇ψt)

}
.

Thus the metric induced by the Riemannian structure (53) on the space of probability
measures is the 2-Wasserstein distance. In Appendix D we derive the geodesic equations
in this metric.

�

Let F be the entropy function relative to π, i.e.,

F (µt) = D(µt‖π) = Entπ(ft) =

∫
Rk
ft log ftdπ,

where ft is given by (52). We claim that the gradient flow of the function F (·) on the
space of probability measures equipped with the above Riemannian metric is given by the
Ornstein-Uhlenbeck semigroup. To prove over claim, recall that the curve {µt : t ≥ 0} is
the gradient flow of F if the tangent vectors to this curve are given by the minus of the
gradients of F . In other words,

∂tµt = −div
(
µt(−gradF (µt))

)
= div

(
µt gradF (µt)

)
. (54)

Here we denote the gradient of F with notation gradF to highlight the fact that it is
computed with respect to the aforementioned Riemannian structure. That is, grad(F ) is
given by

〈gradF (µt),∇ψt〉µt = ∂tF (µt). (55)

Let us first compute gradF (µt):

∂tF (µt) =

∫
Rk
∂t(ft log ft)dπ

=

∫
Rk
∂tft log ftdπ

=

∫
Rk
∂µt log ftdx

= −
∫
Rk

div(µt∇ψt) log ftdx

=

∫
Rk
µt∇ψt · ∇(log ft)dx

= 〈∇ψt,∇(log ft)〉µt
4Consider a re-parametrization of a geodesic.

57



Then comparing to (55) we conclude that

gradF (µt) = ∇(log ft).

We now use this in the gradient flow equation (54):

∂tµt = div(µt gradF (µt))

= div(µt∇(log ft))

= ∇µt · ∇(log ft) + µt∆(log ft).

Therefore,

∂tft =
1

π
∂tµt =

1

π

(
∇(πft) · ∇(log ft) + πft∆(log ft)

)
=
(∇π
π
ft +∇ft

)
· ∇(log ft) + ft∆(log ft)

= (−V ft +∇ft) ·
∇ft
ft

+ ft
ft∆ft − |∇ft|2

f 2
t

= −V∇ft + ∆ft

= −Lft.

We conclude that the gradient flow of F (·), i.e., the entropy function, is nothing but the
flow given by the generator L = ∇V · ∇ −∆ of the Ornstein-Uhlenbeck semigroup. �

With this geometric picture of the flows of Markov semigroups we can now give new
proofs and generalize some of the previous results. Let us start with a proof of the
Otto-Villani theorem. We first need a lemma.

Lemma 11.1. Let ft = e−tLf0 with L be the generator of the Ornstein-Uhlenbeck semi-
group with respect to π = e−V , such that µt = ftπ is a probability measure. Then for any
probability measure τ we have

∂tW2(µt, τ) ≤
√
〈ft,L log ft〉π.

Proof. By the triangle inequality we have

∂tW2(µt, τ) = lim
s→0+

1

s

(
W2(µt+s, τ)−W2(µt, τ)

)
≤ lim

s→0+

1

s
W2(µt, µt+s).

Next letting ∇ψt be the tangent vector to µt, i.e., ∂tµt = −div(µt∇ψt), by the Benamou-
Brenier formula we have

W2(µt, µt+s) ≤
∫ t+s

t

〈∇ψv,∇ψv〉1/2µv dv.

On the other hand, since {µt : t ≥ 0} is a gradient flow of the entropy function we have

∂t Entπ(ft) = 〈∇ψt, grad Entπ(ft)〉µt = −〈∇ψt,∇ψt〉µt .
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Therefore,

W2(µt, µt+s) ≤
∫ t+s

t

√
−∂v Entπ(fv)dv =

∫ t+s

t

√
〈fv,L log fv〉πdv.

Taking the limit we find that

∂tW2(µt, τ) ≤ lim
s→0+

1

s
W2(µt, µt+s)

≤ lim
s→0+

1

s

∫ t+s

t

√
〈fv,L log fv〉πdv

=
√
〈ft,L log ft〉π.

Now we can present yet another proof of the result of Otto and Villani.

Proof of Theorem 9.10. Let ft = e−tLf0 and µt be as in the previous lemma. Define

F (t) = W2(µt, µ0) +

√
1

α1

Entπ(ft).

We compute

∂tF (t) = ∂tW2(µt, µ0) +
∂t Entπ(ft)

2
√
α1 Entπ(ft)

≤
√
〈ft, log ft〉π −

〈ft,L log ft〉π
2
√
α1 Entπ(ft)

≤ 0,

where in the first inequality we use Lemma 11.1 and in the second inequality we use the
1-log-Sobolev inequality 4α1 Entπ(ft) ≤ 〈ft, log ft〉π in the assumption. Therefore, F (t)
is non-increasing function and we have√

1

α1

Entπ(f0) = F (0) ≥ lim
t→∞

F (t) = W2(π, µ0),

where in computing the limit we use the fact that µt → π and ft → 1 as t tends to
infinity. We are done as the choice of f0 is arbitrary.

12 HWI inequality

In this section we prove the so called HWI inequality [23]. This inequality involves the
three quantities of interest, namely, the entropy, the derivative of entropy which is the
Dirichlet form, and the 2-Wasserstein distance.

59



Theorem 12.1 (HWI inequality). Let π be a Borel probability measure on Rk with dπ =
e−V (x)dx where Hess(V ) ≥ cI for some constant c. Then for every Borel probability
measure µ with µ = fπ we have

D(µ‖π) = Entπ(f) ≤ W2(µ, π)
√
〈f,L log f〉π −

c

2
W 2

2 (µ, π). (56)

To emphasis the importance of this inequality let us first show that the result of Bakry
and Emery (Theorem 5.7) easily follows follows from the HWI inequality. Using

W2(µ, π)
√
〈f,L log f〉π ≤

c

2
W 2

2 (µ, π) +
1

2c
〈f,L log f〉π,

in (56) we find that

Entπ(f) ≤ c

2
W 2

2 (µ, π) +
1

2c
〈f,L log f〉π −

c

2
W 2

2 (µ, π) =
1

2c
〈f,L log f〉π.

Then replacing f = g2 gives the desired result.

�

Now we move to the proof of Theorem 12.1. To this end, we use the geometric picture
that was developed in the previous section. We start by computing the second derivative
of the entropy function. Let {µt : t ≥ 0} be an arbitrary curve of probability measures
with ∂tµt = −div(µt∇ψt). Also let ftdπ = dµt. Then we have

∂t Entπ(ft) = −〈div(µt∇ψt), log µt − V 〉
= 〈µt∇ψt,∇(log µt) +∇V 〉
= 〈∇ψt,∇µt〉+ 〈µt∇ψt,∇V 〉. (57)

Next we have

∂2
t Entπ(ft) = 〈∇∂tψt,∇µt〉+ 〈∇ψt,∇∂tµt〉+ 〈∂t(µt∇ψt),∇V 〉

= −〈∂tψt,∆µt〉 − 〈∆ψt, ∂tµt〉+ 〈∂tµt∇ψt,∇V 〉+ 〈µt∇∂tψt,∇V 〉
= −〈∂tψt,∆µt〉+ 〈∆ψt, div(µt∇ψt)〉 − 〈div(µt∇ψt)∇ψt,∇V 〉 − 〈∂tψt, div(µt∇V )〉
= −〈∂tψt,∆µt + div(µt∇V )〉+ 〈∆ψt, div(µt∇ψt)〉 − 〈div(µt∇ψt),∇V · ∇ψt〉
= −〈∂tψt,∆µt + div(µt∇V )〉 − 〈Lψt, div(µt∇ψt)〉.

Now let us further assume that {µt : t ≥ 0} is a geodesic. Then by the geodesic
equation (69) we find that

∂2
t Entπ(ft) =

1

2
〈|∇ψt|2,∆µt + div(µt∇V )〉 − 〈Lψt, div(µt∇ψt)〉

= −1

2
〈|∇ψt|2,L∗µt〉 − 〈Lψt, div(µt∇ψt)〉, (58)

where as before L∗ is the adjoint of L with respect to the inner product (50) given by

L∗µ = −∆µ− div(µ∇V ).

Let B(µt, ψt) be the right hand side of (58), i.e.,

B(µ, ψ) = −1

2
〈|∇ψ|2,L∗µ〉 − 〈Lψ, div(µ∇ψ)〉. (59)
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Lemma 12.2. Let π be a Borel probability measure on Rk with dπ = e−V (x)dx where
Hess(V ) ≥ cI for some constant c. Then the entropy function (with respect to π) is
c-convex. In other words, for any geodesic {µt : t ≥ 0} we have

∂2
t Entπ(ft) ≥ c

∫
Rk
|∇ψt|2dµt,

where ft, ψt are given by ftπ = µ and ∂tµt = −div(µt∇ψt).

Proof. By (58) and (59) it suffices to show that B(µ, ψ) ≥ c|∇ψ|2. Observe that

B(µ, ψ) = −1

2
〈L|∇ψ|2, µ〉+ 〈∇ψ · ∇Lψ, µ〉 = 〈µ,−1

2
L|∇ψ|2 +∇ψ · ∇Lψ〉.

We then compute

∇ψ · ∇(Lψ) = ∇ψ · ∇(∇V · ∇ψ −∆ψ)

=
∑
i,j

∂i∂jV ∂iψ∂jψ + ∂iV ∂i∂jψ∂jψ − ∂jψ∂j∂2
i ψ,

= Hess(V )(∇ψ,∇ψ) + Hess(ψ)(∇ψ,∇V )−
∑
i,j

∂jψ∂j∂
2
i ψ,

and

L|∇ψ|2 = ∇V · ∇|∇ψ|2 −∆|∇ψ|2

= 2
∑
i,j

∂jV ∂iψ∂i∂jψ − (∂i∂jψ)2 − ∂iψ∂i∂2
jψ

= 2
(

Hess(ψ)(∇ψ,∇V )−
∑
i,j

(∂i∂jψ)2 + ∂iψ∂i∂
2
jψ
)
.

Therefore

−1

2
L|∇ψ|2 +∇ψ · ∇Lψ = Hess(V )(∇ψ,∇ψ) +

∑
i,j

(∂i∂jψ)2 ≥ Hess(V )(∇ψ,∇ψ).

Then by the assumption Hess(V ) ≥ cI we have

B(µ, ψ) ≥ 〈µ, c|∇ψ|2〉 = c

∫
Rk
|∇ψ|2dµ. (60)

We need yet another lemma to prove the HWI inequality.

Lemma 12.3. Let {µs : 0 ≤ s ≤ 1} be a geodesic with f sdπ = dµs. Define

f st = e−stLf s,

and dµst = f st dπ (so that µst = e−stL
∗
µs). Define ψst by

∂sµ
s
t = −div(µst∇ψst ).

Then we have
1

2
∂t

∫
Rk
|∇ψst |2dµst + ∂s Entπ(f st ) = −sB(µst , ψ

s
t ).
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The proof of this lemma is left for Appendix E. Now we are ready to prove the main
result of this section that is a stronger version of the HWI inequality.

Theorem 12.4. Let π be a Borel probability measure on Rk with dπ = e−V (x)dx where
Hess(V ) ≥ cI for some constant c. Let µt = e−tL

∗
µ0 and define ft by ftπ = µt so that

ft = e−tLf0. Also let τ be another probability measure with τ = gπ. Then we have

1

2
∂tW

2
2 (µt, τ)

∣∣∣
t=0

+
c

2
W 2

2 (µ0, τ) ≤ Entπ(g)− Entπ(f0).

Before proving this theorem let us first show how the HWI inequality is derived from
it.

Proof of Theorem 12.1. In the statement of Theorem 12.4 let τ = π. Then we have

1

2
∂tW

2
2 (µt, π)

∣∣∣
t=0

+
c

2
W 2

2 (µ0, π) ≤ −Entπ(f0). (61)

On the other hand, by the triangle inequality we have W2(µ0, π) ≤ W2(µt, µ0)+W2(µt, π).
Raising both sides to the power of two, we find that

W 2
2 (µt, π)−W 2

2 (µ0, π) ≤ −W 2
2 (µt, µ0)− 2W2(µt, µ0)W2(µt, π).

Therefore,

1

2
∂tW

2
2 (µt, π)

∣∣∣
t=0
≥ lim

t→0+

1

2t

(
−W 2

2 (µt, µ0)− 2W2(µt, µ0)W2(µt, π)
)

= − lim
t→0+

1

2t
W 2

2 (µt, µ0)−W2(µ0, π) lim
t→0+

1

t
W2(µt, µ0)

(a)
= − lim

t→0+
W2(µt, µ0)∂tW2(µt, µ0)−W2(µ0, π)∂tW2(µt, µ0)

∣∣∣
t=0

(b)

≥ − lim
t→0+

W2(µt, µ0)
√
〈ft,L log ft〉π −W2(µ0, π)

√
〈f0,L log f0〉π

= −W2(µ0, π)
√
〈f0,L log f0〉µ0 .

Here for (a) we use L’Hôpital’s rule and for (b) we use Lemma 11.1 twice. Using this
inequality in (61), the desired result follows.

We now prove Theorem 12.4.

Proof of Theorem 12.4. Let µ0 = τ and µ1 = µ0 and let {µs : 0 ≤ s ≤ 1} be a geodesic
between µ0, µ1. Also define

µst = e−stL
∗
µs,

and f st as before. Observe that µ1
t = µt and f 1

t = ft. By Lemma 12.2 (equation (60))
and Lemma 12.3 we have

1

2
∂t〈∇ψst ,∇ψst 〉µst + ∂s Entπ(f st ) ≤ −cs〈∇ψst ,∇ψst 〉µst .
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Multiplying both sides by e2cst we obtain

1

2
∂t

(
e2cst〈∇ψst ,∇ψst 〉µst

)
+ e2cst∂s Entπ(f st ) ≤ 0,

or equivalently

1

2
∂t

(
e2cst〈∇ψst ,∇ψst 〉µst

)
+ ∂s

(
e2cst Entπ(f st )

)
≤ 2cte2cst Entπ(f st ).

Integrating t over [0, ε] and s over [0, 1] we find that

1

2

∫ 1

0

(
e2csε〈∇ψsε ,∇ψsε 〉µsε − 〈∇ψ

s
0,∇ψs0〉µs0

)
ds+

∫ ε

0

(
e2ct Entπ(f 1

t )− Entπ(f 0
t )
)

dt

≤ 2c

∫ 1

0

∫ ε

0

te2cst Entπ(f st )dsdt

On the other hand, by a re-parametrization argument (see below) we obtain

1

2

∫ 1

0

(
e2csε〈∇ψsε ,∇ψsε 〉µsε − 〈∇ψ

s
0,∇ψs0〉µs0

)
ds ≥ cε

1− e−2cε
W 2

2 (µε, τ)− 1

2
W 2

2 (µ0, τ). (62)

On the other hand, by the data processing inequality we have

Entπ(f 0
t ) ≤ Entπ(f 0) = Entπ(g).

Putting these together we arrive at

cε

1− e−2cε
W 2

2 (µε, τ)− 1

2
W 2

2 (µ0, τ)+

∫ ε

0

e2ct Entπ(f 1
t )dt− εEntπ(g)

≤ 2c

∫ 1

0

∫ ε

0

te2cst Entπ(f st )dsdt.

Once again by the data processing inequality we have Entπ(f st ) ≤ Entπ(f s). Therefore,∫ ε

0

te2cst Entπ(f st )dt ≤
∫ ε

0

te2cst Entπ(f s)ds

≤ e2cs Entπ(f s)

∫ ε

0

tdt

=
ε2

2
ecs Entπ(f s),

where in the second line we use 0 ≤ t ≤ ε ≤ 1 so that e2cst ≤ e2cs. Therefore,

cε

1− e−2cε
W 2

2 (µε, τ)− 1

2
W 2

2 (µ0, τ) +

∫ ε

0

e2ct Entπ(f 1
t )dt− εEntπ(g) ≤ cε2

∫ 1

0

ecs Entπ(f s)ds.

Next, dividing both sides by ε and taking the limit ε→ 0 we obtain

∂ε

( cε

1− e−2cε
W 2

2 (µε, τ)
)∣∣∣

ε=0
+ Entπ(f0)− Entπ(g) ≤ 0,
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where we use limε→0
cε

1−e−2cε = 1/2. Also, using ∂ε
(

cε
1−e−2cε

)∣∣
ε=0

= c/2 we find that

1

2
∂εW

2
2 (µε, τ) +

∣∣∣
ε=0

+
c

2
W 2

2 (µ0, τ) + Entπ(f0)− Entπ(g) ≤ 0,

that is equivalent to the desired result.

It is remained to prove (62). Let θ : [0, 1]→ [0, 1] be an arbitrary increasing function

with θ(0) = 0 and θ(1) = 1. Consider the curve {µθ(r)ε : 0 ≤ r ≤ 1}. We have

µθ(0)
ε = µ0

ε = µ0 = τ, µθ(1)
ε = µ1

ε = µε.

Thus we have a curve between τ and µε. We also have

∂rµ
θ(r)
ε = −θ′(r)div(µθ(r)ε ∇ψθ(r)ε ).

Therefore, by the the Benamou-Brenier formula we have

W 2
2 (µε, τ) ≤

∫ 1

0

θ′(r)2〈∇ψθ(r)ε ,∇ψθ(r)ε 〉µθ(r)ε
dr.

Letting r = θ−1(s) we have

W 2
2 (µε, τ) ≤

∫ 1

0

θ′(θ−1(s))〈∇ψsε ,∇ψsε 〉µsεds.

Now pick

θ−1(s) =
1

mε

∫ s

0

e−2cεvdv,

where

mε =

∫ 1

0

e−2cεvdv =
1− e−2cε

2cε
,

is a normalization constant so that θ(1) = 1. Then we have θ′(θ−1(s)) = mεe
2cεs and

W 2
2 (µε, τ) ≤ mε

∫ 1

0

e2cεs〈∇ψsε ,∇ψsε 〉µsεds.

Therefore, using the fact that {µs : 0 ≤ s ≤ 1} is a geodesic we have

1

2

∫ 1

0

(
e2csε〈∇ψsε ,∇ψsε 〉µsε − 〈∇ψ

s
0,∇ψs0〉µs0

)
ds ≥ 1

2mε

W 2
2 (µε, τ)− 1

2
W 2

2 (µ, τ).

We are done.

We finish this section by two interesting consequences of Theorem 12.4. We start by
the simpler one which is the exponential convergence rate in the 2-Wasserstein distance.

Corollary 12.5. Let π be a Borel probability measure on Rk with dπ = e−V (x)dx where
Hess(V ) ≥ cI for some constant c. Also let µt = e−tL

∗
µ0 with dµt = ftdπ. Then we have

W2(µt, π) ≤ e−ctW2(µ0, π).
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Proof. By Theorem 12.4 for the choice of τ = π we have

1

2
∂tW

2
2 (µt, π) +

c

2
W 2

2 (µt, π) ≤ −Entπ(ft).

Now as shown in the beginning of this section the assumption Hess(V ) ≥ cI gives a log-
Sobolev inequality (the Bakry-Emery result) which itself gives the following 2-Talagrand
inequality

c

2
W 2

2 (µt, π) ≤ Entπ(µt).

Using this in the previous inequality we obtain

1

2
∂tW

2
2 (µt, π) ≤ −cW 2

2 (µt, π),

and then
W 2

2 (µt, π) ≤ e−2ctW 2
2 (µt, π),

which is equivalent to what we want.

Corollary 12.6. Let π be a Borel probability measure on Rk with dπ = e−V (x)dx where
Hess(V ) ≥ cI for some constant c. Then the entropy function is geodesically c-convex.
Namely, for any geodesic {µs : 0 ≤ s ≤ 1} with µs = f sπ we have

(1− s) Entπ(f 0) + sEntπ(f 1)− Entπ(f s) ≥ c

2
s(1− s)W 2

2 (µ0, µ1), ∀s.

Proof. Let µst = e−tL
∗
µs and f st = e−tLf s. For any s ∈ [0, 1] and j ∈ {0, 1} define

h(t) =
ect

2
W 2

2 (µst , µ
j) +

∫ t

0

ecr
(

Entπ(f sr )− Entπ(f j)
)
dr.

Then computing the derivative of h(t) and using Theorem 12.4 we find that h(t) is non-
increasing. Therefore, h(t) ≤ h(0), i.e.,

ect

2
W 2

2 (µst , µ
j)− 1

2
W 2

2 (µs, µj) ≤ −
∫ t

0

ecr
(

Entπ(f sr )− Entπ(f j)
)

dr

≤ −
∫ t

0

ecr
(

Entπ(f st )− Entπ(f j)
)

dr

=
ect − 1

c

(
Entπ(f j)− Entπ(f st )

)
,

where for the second inequality we use the data processing inequality Entπ(f sr ) ≥ Entπ(f st )
as r ≤ t. Next taking the average of these two inequalities for the choices of j = 0, 1 we
obtain

ect

2

(
(1− s)W 2

2 (µst , µ
0) + sW 2

2 (µst , µ
1)
)
− 1

2

(
(1− s)W 2

2 (µs, µ0) + sW 2
2 (µs, µ1)

)
≤ ect − 1

c

(
(1− s) Entπ(f 0) + sEntπ(f 1)− Entπ(f st )

)
,
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Now using (1− s)a2 + sb2 ≥ s(1− s)(a+ b)2 that holds for all 0 ≤ s ≤ 1 we have

(1− s)W 2
2 (µst , µ

0) + sW 2
2 (µst , µ

1) ≥ s(1− s)
(
W2(µst , µ

0) +W2(µst , µ
1)
)2

≥ s(1− s)W 2
2 (µ0, µ1).

Moreover, since {µs : 0 ≤ s ≤ 1} is a geodesic we have

(1− s)W 2
2 (µs, µ0) + sW 2

2 (µs, µ1) = (1− s)s2W 2
s (µ0, µ1) + s(1− s)2W 2

2 (µ0, µ1)

= s(1− s)W 2
s (µ0, µ1).

We conclude that

ect − 1

2
s(1− s)W 2

2 (µ0, µ1) ≤ ect − 1

c

(
(1− s) Entπ(f 0) + sEntπ(f 1)− Entπ(f st )

)
,

or equivalently

c

2
s(1− s)W 2

2 (µ0, µ1) ≤
(

(1− s) Entπ(f 0) + sEntπ(f 1)− Entπ(f st )
)
.

Letting t = 0 we obtain the desired result.

Appendix

A A proof of Theorem 5.7

Let ft = Ttf with {Tt : t ≥ 0} being the semigroup generated by L = ∇V · ∇ −∆. Also
let gt =

√
ft. Then we have ∂tft = −Lft where ∂t = ∂/∂t. A simple computation verifies

that
∂t Entπ(ft) = −4〈gt,Lgt〉π.

Also it can be shown that

∂tgt = −Lgt +
|∇gt|2

gt
.

Next we compute

∂t〈gt,Lgt〉π = −2〈Lgt,Lgt〉π + 2
〈 |∇gt|2

gt
,Lgt

〉
π
. (63)
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The second term equals〈 |∇gt|2
gt

,Lgt
〉
π

=
〈
∇|∇gt|

2

gt
,∇gt

〉
π

=
〈
∇gt,∇(

1

gt
)|∇gt|2 +

1

gt
∇|∇gt|2

〉
π

=
〈
∇gt,−

1

g2
t

∇(gt)|∇gt|2 +
1

gt
∇|∇gt|2

〉
π

=

∫
Rk

[
− (∂igt)

2(∂jg
2
t )

g2
t

+ 2
∂igt∂jgt∂i∂jgt

gt

]
dπ,

where we suppress a summation over i, j. Also for the first term in (63) we have

〈Lgt,Lgt〉π = 〈∇Lgt,∇gt〉π
= 〈∇(∇V · ∇gt −∆gt),∇gt〉π

=

∫
Rk

[
∂igt∂i(∂jV ∂jgt)− ∂igt∂i(∂2

j gt)
]
dπ

=

∫
Rk

[
∂igt(∂i∂jV ∂jgt + ∂jV ∂i∂jgt)− ∂igt∂i(∂2

j gt)
]
dπ.

On the other hand we have∫
Rk
∂igt∂i(∂

2
j gt)dπ =

∫
Rk
∂igt∂i(∂

2
j gt)e

−V dx

= −
∫
Rk
∂j
(
e−V ∂igt

)
∂i∂jgtdx

= −
∫
Rk

[
− ∂jV e−V ∂igt∂i∂jgt + e−V (∂i∂jgt)

2
]
dx

= −
∫
Rk

[
− ∂jV ∂igt∂i∂jgt + (∂i∂jgt)

2
]
dπ.

Therefore,

〈Lgt,Lgt〉π =

∫
Rk

[
∂igt∂i∂jV ∂jgt + (∂i∂jgt)

2
]
dπ.

Putting these in (63) we find that

∂t〈gt,Lgt〉π = −2

∫
Rk

[
∂igt∂i∂jV ∂jgt + (∂i∂jgt)

2 +
(∂igt)

2(∂jgt)
2

g2
t

− 2
∂igt∂jgt∂i∂jgt

gt

]
dπ

= −2

∫
Rk

[
Hess(V )(∇gt,∇gt) +

(
∂i∂jgt −

∂igt∂jgt
gt

)2]
dπ

≤ −2

∫
Rk

Hess(V )(∇gt,∇gt)dπ

≤ −2c〈∇gt,∇gt〉π
= −2c〈gt,Lgt〉π,
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where in the last inequality we use the assumption Hess(V ) ≥ cI. We conclude that

〈gt,Lgt〉π ≤ e−2ct〈g0,Lg0〉π.

Therefore we have

Entπ(g2
0) = Entπ(f0)

= −
∫ ∞

0

∂t Entπ(ft)dt

= 4

∫ ∞
0

〈gt,Lgt〉πdt

≤ 4

∫ ∞
0

e−2ct〈g0,Lg0〉πdt

=
2

c
〈g0,Lg0〉π.

We are done.

B Proof of Lemma 8.2

Define
g(x) = ln

(
(1− p)e−px + pe(1−p)x).

It is easy to verify that g(0) = g′(0) = 0 and

g′′(x) =
p(1− p)ex(

pex + (1− p)
)2 ≤

1

4
, ∀x.

Then by Taylor’s theorem for some ξ between 0 and x we have

g(x) = g(0) + g′(0)x+ g′′(ξ)
x2

2
≤ x2

8
.

We are done.

C Hopf-Lax formula

We will show that given f : Rk → R the function (t,x) 7→ Qtf(x) defined by

Qtf(x) = inf
y∈Rk

f(y) +
1

t
|x− y|2, t > 0, Q0f = f, (64)

gives a solution of the Hamilton-Jacobi equation:{
∂
∂t
u+ 1

4
|∇xu|2 = 0, t ≥ 0,x ∈ Rk

u(0,x) = f(x), x ∈ Rk.
(65)
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The facts that limt→0+ Qtf(x) = f(x) and that Qtf(x) is almost everywhere differentiable
(i.e., it is a Lipschitz function) is left to the reader. So we verify (65). Before that it is
instructive to note that {Qt : t ≥ 0} forms a semigroup. To show this we compute

QsQtf(x) = inf
y
Qtf(y) +

1

s
|y − x|2

= inf
y

inf
z
f(z) +

1

t
|y − z|2 +

1

s
|y − x|2

= inf
z
f(z) + inf

y

1

t
|y − z|2 +

1

s
|y − x|2

= inf
z
f(z) +

1

s+ t
|x− z|2

= Qs+tf(x),

where we used

inf
y

1

t
|y − z|2 +

1

s
|y − x|2 =

1

s+ t
|x− z|2,

which is an easy exercise to prove.

We now turn to the proof of (65). For every r ∈ Rk and ε > 0 we have

Qt+εf(x + εr) = QεQtf(x + εr)

= inf
y
Qtf(y) +

1

ε
|x− y + εr|2

≤ Qtf(x) + ε|r|2.

Dividing both sides by ε and taking the limit ε→ 0+ gives

∂

∂t
Qtf(x) + r · ∇Qtf(x) ≤ |r|2.

Now optimizing over the choice of r ∈ Rk we arrive at

∂

∂t
Qtf(x) +

1

4

∣∣∇Qtf(x)
∣∣2 ≤ 0.

To prove inequality in the other direction we just need to find some r0 ∈ Rk such that

∂

∂t
Qtf(x) + r0 · ∇Qtf(x) ≥ |r0|2. (66)

In this case we would have

∂

∂t
Qtf(x) ≥ |r0|2 − r0 · ∇Qtf(x) ≥ inf

r
|r|2 − r · ∇Qtf(x) = −1

4

∣∣∇Qtf(x)
∣∣2.

To find such r0 let us take z to be such that

Qtf(x) = f(z) +
1

t
|x− z|2.
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For arbitrary ε > 0 define

r0 =
x− z

t
, y = x− εr0.

We now compute

Qtf(x)−Qt−εf(x− εr0) = Qtf(x)−Qt−εf(y)

≥ f(z) +
1

t
|x− z|2 −

(
f(z) +

1

t− ε
|y − z|2

)
= ε|r0|2.

Dividing both sides by ε and taking the limit ε→ 0+ we obtain the desired inequality (66).

D Geodesic equation of the 2-Wasserstein distance

Let µ0, µ1 be arbitrary probability measures. Then by the Benamou-Brenier formula we
have

W 2
2 (µ0, µ1) = inf

{µt:0≤t≤1}

{∫ 1

0

〈∇ψt,∇ψt〉µtdt : ∂tµt = −div(µt∇ψt)

}
.

Assume that {µt : 0 ≤ t ≤ 1} is a geodesic. Then for any set of functions {gt : 0 ≤ t ≤ 1}
such that

∫
Rk gtdx = 0 for all t and g0 = g1 = 0, the curve µεt = µt + εgt is also a valid

curve between µ0, µ1 in the space of probability measures assuming that |ε| is sufficiently
small. Therefore, letting

∂tµ
ε
t = −div(µεt∇ψεt), (67)

we must have

∂ε

(∫ 1

0

〈∇ψεt ,∇ψεt〉µεtdt
)∣∣∣

ε=0
= 0

Taking the derivative of both sides of (67) at ε = 0 we find that

∂tgt = −div(gt∇ψt + µtVt), Yt = ∂ε(∇ψεt)
∣∣∣
ε=0
. (68)
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Therefore, we have

0 = ∂ε

(∫ 1

0

〈∇ψεt ,∇ψεt〉µεtdt
)∣∣∣

ε=0

= 2

∫ 1

0

〈Yt,∇ψt〉µtdt+

∫ 1

0

〈∇ψt,∇ψt〉gtdt

= 2

∫ 1

0

〈µtYt,∇ψt〉dt+

∫ 1

0

〈gt∇ψt,∇ψt〉dt

= −2

∫ 1

0

〈div(µtYt), ψt〉dt+

∫ 1

0

〈gt∇ψt,∇ψt〉dt

(a)
= 2

∫ 1

0

〈∂tgt + div(gt∇ψt), ψt〉dt−
∫ 1

0

〈div(gt∇ψt), ψt〉dt

= 2

∫ 1

0

〈∂tgt, ψt〉dt+

∫ 1

0

〈div(gt∇ψt), ψt〉dt

= −2

∫ 1

0

〈gt, ∂tψt〉dt−
∫ 1

0

〈gt∇ψt,∇ψt〉dt,

where in (a) we use (68). Since the above equation must hold for any choice functions
{gt : 0 ≤ t ≤ 1} with the above constraint, we must have

∂ψt +
1

2
|∇ψt|2 = 0, ∀t. (69)

E Proof of Lemma 12.3

We compute
∂t〈∇ψst ,∇ψst 〉µst = 2〈∇∂tψst ,∇ψst 〉µst + 〈∇ψst ,∇ψst 〉∂tµst .

For the second term we have

〈∇ψst ,∇ψst 〉∂tµst = 〈∂tµst∇ψst ,∇ψst 〉 = −〈L∗µst∇ψst ,∇ψst 〉.

For the first term we have

〈∇∂tψst ,∇ψst 〉µst = −〈∂tψst , div(µst∇ψst )〉
= 〈∂tψst , ∂sµst〉
= ∂t〈ψst , ∂sµst〉 − 〈ψst , ∂s∂tµst〉
= −∂t〈ψst , div(µst∇ψst )〉+ 〈ψst , ∂s(sL∗µst)〉
= ∂t〈∇ψst , µst∇ψst 〉+ 〈ψst , ∂s(sL∗µst)〉.

Putting these together we arrive at

∂t〈∇ψst ,∇ψst 〉µst = 2∂t〈∇ψst ,∇ψst 〉µst + 2〈ψst , ∂s(sL∗µst)〉 − s〈L∗µst∇ψst ,∇ψst 〉.
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Therefore,

1

2
∂t〈∇ψst ,∇ψst 〉µst =

s

2
〈L∗µst∇ψst ,∇ψst 〉 − 〈ψst , ∂s(sL∗µst)〉

=
s

2
〈L∗µst∇ψst ,∇ψst 〉 − 〈ψst ,L∗µst〉 − s〈ψst , ∂s(L∗µst)〉

Also by (57) we have

∂s Entπ(f st ) = 〈Lψst , µst〉 = 〈ψst ,L∗µst〉.

Therefore,

1

2
∂t〈∇ψst ,∇ψst 〉µst + ∂s Entπ(f st ) =

s

2
〈L∗µst∇ψst ,∇ψst 〉 − s〈ψst , ∂s(L∗µst)〉

=
s

2
〈L∗µst , |∇ψst |2〉 − s〈ψst ,L∗∂sµst〉

=
s

2
〈L∗µst , |∇ψst |2〉+ s〈Lψst , div(µst∇ψst )〉

= −sB(µst , ψ
s
t ).
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