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Abstract. We obtain lower bounds on the rank of the kappa ring
κ∗

(
Mg,n

)
of the Deligne-Mumford compactification of the moduli space

of curves in different degrees by studying the combinatorial kappa quo-
tient κ∗c(Mg,n). Let d denote the degree and e = 3g − 3 + n− d denote

the co-degree. We show that if n > min{g − 2, e} the rank of κd(Mg,n)
is bounded below by |P(d, e + 1)| where P(d, r) denotes the set of par-
titions of the positive integer d into at most r parts. We compute the
rank of κ∗

(
Mg,n

)
in co-degree 1 and prove, in particular, that for g > 2

and n > 0 this rank is equal to⌈
(n+ 1)(g + 1)

2

⌉
+ 1.

Furthermore, as g and e remain fixed and n grows large, we prove that
the rank of κ∗c(Mg,n) in co-degree e is asymptotic to(

n+e
e

)(
g+e
e

)
(e+ 1)!

.

Together with the results of [3] this last observation shows that the rank

of κ∗
(
Mg,n

)
follows the same asymptotic behavior.

1. Introduction

Let ε = π1
g,n :Mg,n+1 →Mg,n denote the universal curve over the moduli

space Mg,n of stable genus g, n-pointed curves. Throughout this paper, we
will assume that n > 0. The psi and kappa classes in the Chow ring of
Mg,n are defined as follows [8]. Let Li →Mg,n+1 denote the cotangent line

bundle over Mg,n+1 whose fiber over a given point (which is an (n + 1)-

pointed genus g curve) is the cotangent space over the ith marked point.
The ith psi-class ψi over Mg,n+1 is then defined by

ψi = c1(Li) ∈ A1(Mg,n+1).

Correspondingly, the i-th kappa-class κi is defined via

κi = ε∗(ψ
i+1
n+1) ∈ Ai(Mg,n).

The push forwards of the monomials in κ and ψ classes from the boundary
strata span the tautological ring R∗(Mg,n) [5, 6].

The κ, ψ and tautological classes over an open subset U of the moduli
space Mg,n, and in particular over the smooth part Mg,n and the moduli
Mc

g,n of curves of compact type, are defined by restricting the respective
1
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classes from Mg,n to the corresponding open subset U ⊂Mg,n. The kappa

ring κ∗
(
Mg,n

)
of the moduli space of curves is the subring of the tautolog-

ical ring R∗(Mg,n) generated by the kappa classes κ1, κ2, ... over Q. One
may define the kappa ring κ∗(U) in a similar way. It was observed by Pand-
haripande [10] that if one restricts attention to the moduli space Mc

g,n, the
structure of the kappa ring may be largely understood using a combination
of combinatorial arguments and localization ideas. Pandharipande shows,
consequently, that the rank of the ring κ∗(Mc

g,n) in degree d is at most
|P(d, 2g − 2 + n − d)|, where P(d, r) denotes the set of partitions of d into
at most r parts.

We use combinatorial observations to obtain a number of lower bounds
on the rank of κ∗

(
Mg,n

)
. For this purpose, associated with every stable

weighted graph (see the second section for the definition) one may define a
natural cycle in the Chow ring of Mg,n. We refer to such cycles as com-
binatorial cycles in this paper. Combinatorial cycles are usually called the
boundary strata of Mg,n in the literature. Correspondingly, we may define

the combinatorial tautological quotient R∗c(Mg,n) to be the vector space ob-
tained as the quotient of the tautological ring by setting trivial the classes
which integrate trivially over all such combinatorial cycles. It also makes
sense to talk about the combinatorial kappa quotients, denoted by κ∗c(Mg,n).

Since κ∗c(Mg,n) is naturally a quotient of κ∗
(
Mg,n

)
, the rank of the former

gives a lower bound on the rank of the latter. It may be useful to note that
the image of κ∗

(
Mg,n

)
in the Gorenstein quotient of the tautological ring

is (potentially) larger than κ∗c(Mg,n). In this paper, we prove a number of

theorems about the rank of κ∗c(Mg,n) in different degrees. In particular we
show

Theorem 1. Let e = 3g − 3 + n− d ≥ 0. If n > min{g − 2, e} the rank of
the combinatorial kappa quotient κ∗c(Mg,n) in degree d, and thus the rank of

κdc(Mg,n), is bounded below by |P(d, e+ 1)|.

In co-degree 1, κ∗c(Mg,n) is relatively easy to describe, as presented in the
following theorem.

Theorem 2. For d = 3g− 4 +n and g > 1 the rank of κdc(Mg,n) is equal to
⌈

(n+ 1)(g + 1)

2

⌉
− 1,

while for g = 1 the rank is equal to n− 1.

The reason for the difference between genus 1 and higher genus in the
statement of Theorem 2 is that there is a relation between the combinatorial
divisors of M1,n as far as the kappa classes are concerned. More precisely,

let Di ' M1,n−i−1 ×M0,i+3, i = 0, 1, ..., n − 2 denote the divisor in M1,n

which corresponds to a degeneration of an n-pointed genus 1 curve to an
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(n− i− 1)-pointed genus 1 curve and an (i+ 3)-pointed genus 0 curve. The
labeling of the points on either of the two components is not important,
although we fix one such labeling. Let Dn−1 ' M0,n+2 denote the divisor
which corresponds to a degeneration of an n-pointed genus 1 curve to an
(n+ 2)-pointed genus 0 curve.

Theorem 3. For every element κ ∈ κn−1(M1,n)

1

12

∫

[Dn−1]
κ =

n−2∑

i=0

(
n− 2

i

)∫

[Di]
κ.

A small modification in the proof of Theorem 2, together with the result
of Al-Aidroos [1], implies the following theorem about the kappa ring in
co-degree 1:

Theorem 4. If n > 0, the rank of κ3g+n−4(Mg,n) is given by

rank
(
κ3g+n−4(Mg,n)

)
=





n− 1 if g = 1⌈
3n+1

2

⌉
if g = 2⌈

(n+1)(g+1)
2

⌉
+ 1 if g > 2.

In particular, Theorem 2 and Theorem 4 imply that the quotient map
from the kappa ring to its combinatorial quotient is not an isomorphism
for g > 2. This should perhaps be compared with the implications of The-
orem 1.5 and Theorem 1.8 from [10], where Pandharipande describes an
isomorphism

ıg,n : κd
(
Mc

0,2g+n

)
→ κd

(
Mc

g,n

)

for n > 0. The combinatorial quotient of κ(Mc
g,n) may be defined by taking

its quotient by the vector space spanned by the kappa classes κ ∈ κ(Mc
g,n)

such that ∫

[D]
λgκ = 0 ∀ [D].

The isomorphism ıg,n shows in particular, that the quotient map from κ(Mc
g,n)

to its combinatorial quotient is an isomorphism. The authors were initially
motivated by this result to explore if the map from the kappa ring of the
campactified moduli space of pointed curves to its combinatorial quotient
is an isomorphism, and the above discussion gives a negative answer to this
question.

The permutation group Sn acts on Mg,n, and thus on the tautological

ring R∗(Mg,n). Theorem 4, together with the work of Al-Aidroos, implies
that every tautological class in co-degree 1 which is invariant under the ac-
tion of Sn on R∗(Mg,n) belongs to the kappa ring.

When the co-degree e = 3g − 3 + n − d is arbitrary, a theorem similar
to Theorem 2 may be proved for the asymptotic behavior of the rank of
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the combinatorial kappa quotient κdc(Mg,n), as the number n of the marked
points grows large:

Theorem 5. The rank of the combinatorial kappa quotient κc(Mg,n) in co-
degree e, as the number n of the marked points becomes large, is asymptotic
to (

n+e
e

)
.
(
g+e
e

)

(e+ 1)!
.

Note that the quantity
(
n+e
e

)
.
(
g+e
e

)
/(e+ 1)! describes the asymptotics of

the number of boundary strata of codimension e in Mg,n/Sn.

In [3] we show that the quotient map

κ∗
(
Mg,n

)
−→ κ∗c(Mg,n)

is an isomorphism for g ≤ 2. This makes our results on the structure of
the combinatorial kappa quotient more relevant when the genus is small.
Moreover, localization is used in [3] to bound the rank of κ∗

(
Mg,n

)
from

above. Together with Theorem 5 this implies that the rank of κ∗
(
Mg,n

)
in

co-degree e, as the number n of the marked points becomes large is asymp-
totic to

(
n+e
e

)
.
(
g+e
e

)
/(e+ 1)!.

The paper is organized as follows. In Section 2 we introduce the com-
binatorial cycles and discuss the integration of the κ and ψ classes over
them. Each d-dimensional combinatorial cycle C ⊂Mg,n gives a linear map∫
C : κd(Mg,n) → Q. Section 3 is (naively speaking) devoted to finding a

list of combinatorial cycles C1, ..., CN such that there are no trivial relations
among the functionals

∫
Ci . This gives a N × |P(d)| matrix R(d; g, n), and

the rank r(d; g, n) of this matrix gives the rank of the combinatorial kappa
quotient in degree d. In Section 4 a strategy for estimating r(d; g, n) from
below is described and a quick corollary of this strategy is Theorem 1.

In Section 5 we study the kappa ring in co-degree 1, i.e. d = 3g − 4 + n.
Explicit combinatorial formulas for the integration of κ and ψ classes over
M1,n are used to prove that there is a non-trivial relation among the func-
tionals

∫
Ci when g = 1 and d = n − 1, given by Theorem 3. Furthermore,

we show that the rank of κn−1
c (M1,n) is n − 1. For g > 1 the computa-

tion of the rank of κ3g−4+n
c (Mg,n) is reduced, by the results of Section 4,

to the computation of the rank of certain (g + 1) × (g + 1) matrices with
entries consisting of the integrals of ψ classes. We study the aforementioned
matrices, compute their determinant using the KdV, String and Dilation
equations, conclude that all of them are full rank and prove Theorem 2.
The same matrices re-appear as we study the asymptotic behavior of the
rank of κ3g−3+n−e

c (Mg,n) as n goes to infinity in Section 6. Once again, the
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results of Section 5 are used to prove Theorem 5.
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2. Combinatorial cycles and the κ classes

Let us first consider an alternative basis for the kappa ring of Mg,n,
instead of the kappa classes. Let

πkg,n :Mg,n+k →Mg,n

denote the forgetful map which forgets the last k marked points.

Definition 2.1. For every multi-set p = (a1 ≥ a2 ≥ ... ≥ ak) of positive
integers define

• |p| := k and σ(p) :=
∑k

i=1 ai

• κp := κa1,...,ak :=
(
πkg,n

)
∗

(∏k
i=1 ψ

ai+1
n+i

)
∈ κ∗

(
Mg,n

)

• κ(p) = κ(a1, ..., ak) :=
∏k
i=1 κai ∈ κ∗

(
Mg,n

)
.

The classes κp, for p a multi-set corresponding to a partition of d = σ(p)

in P(d), span the kappa ring κ∗
(
Mg,n

)
in degree d as a Q-vector space. In

particular, for every positive integer d, κd = κ(d) is the κ class corresponding
to the multi-set consisting of the single element d.

Let p = (a1, a2, ..., ak) be a multi-set. For τ ∈ Sk a permutation over k
elements let

τ = τ1τ2...τr,

be the canonical cycle decomposition for τ , including the 1-cycles. Let τ(p)i,
for i = 1, 2, ..., r, denote the sum of the elements of p whose indices corre-
spond to the i-th cycle τi. Define

κ(τ,p) :=

r∏

i=1

κτ(p)i .

The following general formula is due to Faber and is discussed in [2].

Lemma 2.2. For every partition p ∈ P(d) as above we have

κp =
∑

τ∈Sk

κ(τ,p).
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An immediate consequence of the above formula is the following lemma,
c.f. lemma 1 in [11].

Lemma 2.3. There is an invertible |P(d)|×|P(d)| matrix Ad = (Aq
p)p,q∈P(d),

independent of g and n, such that

κp =
∑

q∈P(d)

Aq
pκ(q)

is satisfied in Ad(Mg,n) for all g and n.

Proof. The transformation is given by Faber’s formula from lemma 2.2
above. In the partial ordering of P(d) by length the transformation is tri-
angular, with 1’s on the diagonal, hence invertible.

Our main tool for proving the independence of the generators in the kappa
ring is the integration against the combinatorial cycles.

Definition 2.4. A weighted graph G is a finite connected graph with a set
V (G) of vertices and a set E(G) of edges, and a weight function

ε = εG : V (G)→ Z≥0 × 2{1,...,n},

where 2{1,...,n} denotes the set of subsets of {1, ..., n}. For i ∈ V (G) denote
the degree of iby di = d(i) and let ε(i) = (gi, Ii). A stable weighted graph is
a weighted graph G with the property that {Ii | i ∈ V (G)} is a partition of
{1, ..., n} and for every vertex i ∈ V (G), 2gi + |Ii|+ di > 2. If G is a stable
weighted graph define n(G) = n and

g(G) :=


 ∑

i∈V (G)

gi


+ |E(G)| − |V (G)|+ 1.

Suppose that G is a stable weighted graph as above. An automorphism
φ of G consists of a pair of bijective maps φV : V (G) → V (G) and φE :
E(G) → E(G) and a subset Eφ ⊂ E(G) of twists such that the following
are satisfied.

• For every edge e ∈ E(G) connecting the vertices i, j ∈ V (G), φE(e)
is an edge connecting φV (i) and φV (j).
• For every i ∈ V (G), ε(i) = ε(φ(i)).
• Every e ∈ Eφ connects a vertex to itself.

If φ = (φV , φE , Eφ) and ψ = (ψV , ψE , Eψ) are a pair of automorphisms of
G, define

ψ ◦ φ = (ψV ◦ φV , ψE ◦ φE , Eψ◦φ),

where the subset Eψ◦φ ⊂ E(G) is defined by

Eψ◦φ :=
{
e ∈ E(G)

∣∣ (e ∈ Eφ and φ(e) 6∈ Eψ
)

or
(
e 6∈ Eφ and φ(e) ∈ Eψ

)}

The automorphisms of G form a group which is denoted by Aut(G).
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Associated with a stable weighted graph G we may construct a cycle in
the Chow ring ofMg(G),n(G) as follows. Associated with a vertex i ∈ V (G),

letM(i) denote the moduli spaceMgi,|Ii|+di where the labels of the first |Ii|
marked points are chosen from Ii. The labels of the last di marked points
correspond to those edges in E(G) which are adjacent to i. If e is an edge
which connects i to a different vertex j of G, one of the last di marked points
is labeled with e. If e is an edge connecting i to itself, two of the last di
marked points will be labeled with e+ and e−. Let C(G) denote the product

C(G) =
∏

i∈V (G)

M(i) =
∏

i∈V (G)

Mgi,|Ii|+di .

Any automorphism φ of of the stable weighted graph G gives an automor-
phism of the space C(G). The automorphism φ = (φV , φE , Eφ) takesM(i)

to M(φV (i)), by taking a marking corresponding to an edge e connecting i
to j to a marking corresponding to the edge φE(e), and taking the pair of
markings (e−, e+) to (φE(e)−, φE(e)+) (respectively to (φE(e)+, φE(e)−)) if
e 6∈ Eφ (respectively if e ∈ Eφ). Note that if φV (i) 6= i then Ii = IφV (i) im-
plies that Ii = IφV (i) = ∅. The group Aut(G) of automorphisms of G thus
acts on C(G). There is a map ıG from the product C(G) to the moduli space
Mg(G),n(G), which is defined as follows. Choose a point (Σi, zi ∪wi)i∈V (G)

of C(G), where zi and wi are sets of |Ii| and di marked points on the curve
Σi of genus gi respectively. For an edge e ∈ E(G) connecting i, j ∈ V (G)
glue the marked points in wi and wj corresponding to e to each other. For
an edge e ∈ E(G) connecting i ∈ V (G) to itself glue the marked points in
wi which are labeled with e− and e+ to each other. The result is a stable
curve

ıG

(
(Σi, zi ∪wi)i∈V (G)

)
∈Mg(G),n(G).

The map ıG respects the action of Aut(G), and gives an embedding of
C(G)/Aut(G) inMg(G),n(G). Thus, a stable weighted graph G determines a
cycle

(ıG)∗ [C(G)] = |Aut(G)|.(ıG)∗

[ C(G)

Aut(G)

]
∈ Ad

(
Mg(G),n(G)

)
,

where d = 3g(G)−3+n(G)−|E(G)|. This cycle is denoted by [G], by slight
abuse of notation.

Example 2.5. Let G be the stable weighted graph which consists of a vertex
v and two edges e1 and e2 which connect v to itself, while ε(v) = (0, 0). In
this case C(G) = M0,4 where the marked points are labeled with e−1 , e

+
1 , e

−
2

and e+
2 . We may define an automorphism φ by setting

φV (v) = v, φE(e1) = e2, φE(e2) = e1 and Eφ = {e1}.
The action of φ on M0,4 is then given by

φ(e+
1 ) = e−2 , φ(e−1 ) = e+

2 , φ(e+
2 ) = e+

1 and φ(e−2 ) = e−1 .
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Note that φ2 fixes v, e1 and e2, while Eφ2 = {e1, e2}. Moreover, φ is an
element of order 4, and that the automorphism group consists of 8 elements.

For a stable weighted graph G let us assume that n = n(G) and g = g(G).
Let κp = κa1,...,ak be a κ class. If

σ(p) + |E(G)| = 3g − 3 + n

we may integrate κp over [G] ∈ A3g−3+n−|p|(Mg,n). The integral

〈
κp , [G]

〉
=

∫

[G]
κp =

∫

(πk
g,n)∗[G]




k∏

j=1

ψ
aj+1
n+j


 ∈ Q

may be computed in terms of the integrals of the top degree ψ classes over the
moduli spaces Mg,n as follows. The components of (πkg,n)∗[G] are indexed
by the functions

j :
{

1, 2, ..., k
}
−→ V (G).

Here j(p) corresponds to the component M(j(p)) of C(G) which contains
the image of the (n + p)-th marked point under the forgetful map. Let us
denote the space of all such maps by [k,G]. For j ∈ [k,G] let us denote the
corresponding component of (πkg,n)∗[G] by [G, j]. Define

ψi(p, j) :=
∏

p∈j−1(i)

ψ
ap+1
n+p , ∀ j ∈ [k,G], i ∈ V (G).

We may then compute

∫

(πk
g,n)∗[G]




k∏

j=1

ψ
aj+1
n+j


 =

∑

j∈[k,G]

∫

[G,j]




k∏

j=1

ψ
aj+1
n+j




=
∑

j∈[k,G]


 ∏

i∈V (G)

∫
[
Mgi,|Ii|+di+|j−1(i)|

] ψi(p, j)

 .

(1)

The degree of ψi(p, j) may be computed as

deg (ψi(p, j)) =
∑

p∈j−1(i)

(ap + 1) =
∣∣j−1(i)

∣∣+
∑

p∈j−1(i)

ap.

The integrals in the last line of (1) are trivial unless the degree of ψi(p, j)
matches the dimension of Mgi,|Ii|+di+|j−1(i)|, i.e. if and only if

∑

p∈j−1(i)

ap = 3gi − 3 + |Ii|+ di.

Let

Q =
{

(g, n) ∈ Z≥0 × Z+
∣∣ 2g + n > 2

}
.
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If V (G) = {1, ...,M}, the modified weight multi-set associated with G is the
multi-set

qG :=
(
θG(i) ∈ Q

∣∣ i ∈ {1, ...,M}
)
, where

θG(i) := (gi,mi = |Ii|+ di), ∀ 1 ≤ i ≤M.

In other words, θG(i) records the genus and the total number of the marked
points (i.e. marked points and nodes) on the component corresponding to
the vertex i, and qG records all the pairs corresponding to the vertices of
G (in a sense) regardless of the structure of G as a graph. We may assume
that 3gi−3 +mi > 0 for i = 1, ..., k and (gi,mi) = (0, 3) for i = k+ 1, ...,M .

Moreover, the value computed in equation 1 does not depend on the
graph G, and only depends on the modified weight multi-set qG. We define
〈p,qG〉 := 〈κp, [G]〉. In fact, the quantity 〈p,q〉 may be defined for every
multi-set q of the elements of Q.

Let p(q) denote the multi-set (3gi − 3 + mi)
k
i=1, which corresponds to a

partition of d = dim([G]). For a partition p ∈ P(d), let Q(p; g, n) denote the
set of all multi-sets q = {(gi,mi)}Mi=1 of elements of Q such that p(q) = p
and there is a stable weighted graph G with

q = qG, g = g(G), and n = n(G).

If p = (a1 ≥ a2 ≥ ... ≥ ak > 0) is a partition of d and q ∈ Q(p; g, n), after
possible re-arrangement of the indices we have

• M ≥ k, (gi,mi) = (0, 3) for k < i ≤M .
• 0 ≤ gi ≤

⌊
ai+2

3

⌋
for 1 ≤ i ≤ k.

• (k + d+ 2)− (2g + n) ≤∑k
i=1 gi ≤ g.

The last inequality follows since

g =

(
k∑

i=1

gi

)
+ |E(G)| − |V (G)|+ 1 =

(
k∑

i=1

gi

)
+ (3g− 3 +n− d)−M + 1,

and M ≥ k.

Lemma 2.6. For every p = (a1 ≥ a2 ≥ ... ≥ ak > 0) ∈ P (d) and every
multi-set q of M elements {θi = (gi,mi)}Mi=1 in Q the following are true.

(1) The elements of Q(p; g, n) are in one-to-one correspondence with the
choice of genera (g1, ..., gk) satisfying the following two relations.

0 ≤ gi ≤
⌊
ai + 2

3

⌋
∀ i = 1, ..., k,

(d+ k + 2)− (2g + n) ≤
k∑

i=1

gi ≤ g.
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(2) For every integer e ≥M − 1 such that

M∑

i=1

mi ≥ 2e

there is a connected stable weighted graph G = G(q, e) with e edges
such that q = qG.

Proof. We have already seen that for q ∈ Q(p; g, n) the properties
stated before Lemma 2.6 are satisfied. This immediately gives the gen-
era (g1, ..., gk). On the other hand, if (g1, ..., gk) are given as above, one may
set mi := ai − 3gi + 3, for i = 1, ..., k, and (gi,mi) = (0, 3) for k < i ≤ M ,
where

M = 2g − 2 + n+
k∑

i=1

(gi − ai) ≥ k.

Consider the multi-set q = ((gi,mi))
M
i=1. The desired stable weighted graph

G corresponding to q should have e = 3g − 3 + n− d edges. Since

M∑

i=1

mi = 3M + d− 3
k∑

i=1

gi = n+ 2e ≥ 2e,

the second part of the lemma implies that there is a stable weighted graph
G which corresponds to q. It thus suffices to prove the second claim of the
lemma.

Suppose that a multi-set q = (gi,mi)
M
i=1 is given as above, and that∑M

i=1mi ≥ 2e ≥ (2M − 2). Assume that m1 is the smallest of all mi. If

m1 ≥ 2 let A be a set of
∑M

i=1mi elements

A = {(i, j)|i = 1, ...,M, j = 1, ...,mi},
and B denote a set of e (disjoint) pairs of elements of A, where M − 1 of
the pairs are the following

((1, 2), (2, 1)), ((2, 2), (3, 1)), ..., ((M − 1, 2), (M, 1)).

This is possible since the total number of points in A is at least 2e, e ≥M−1,
and eachmi is at least 2. LetG be the graph with vertices V (G) = {1, ...,M}
and E(G) be a set of e edges, where for every pair ((i, pi), (j, pj)) ∈ B we
draw an edge between i and j in E(G). Finally, let εG(i) = (gi, Ii) where Ii
is a set of mi − di elements. It is straightforward to check that G, together
with the weight function εG is a stable weighted graph .

If m1 = 1, let

q′ = (gi,mi)
M
i=2, e′ = e− 1.

Clearly, e′ ≥M −2, and using an induction on the number of vertices, there
is a corresponding stable weighted graph G′ with e′ edges and q′ = qG′ .
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Suppose that the vertex i ∈ {2, ...,M} has degree di in G′ and assume that
εG′(i) = (gi, Ii) where Ii contains ni elements. Thus we have mi = di + ni.
Note that

2e− 2 =

(
M∑

i=1

mi

)
−
(

M∑

i=2

ni

)
− 1 ≥ 2e−

(
M∑

i=2

ni

)
− 1

⇒
M∑

i=2

ni ≥ 1.

(2)

Let G be the stable weighted graph obtained by adding a vertex 1 to
G′, assigning the genus g1 to 1, and letting I1 = ∅. We attach one edge
connecting 1 to one of the vertices corresponding to the non-zero values
of ni, i = 2, ...,M . The last inequality in (2) implies that this is always
possible. The stable weighted graphG will then have the required properties.
This completes the argument in the second case (i.e. m1 = 1) by induction
on the number M of vertices.

3. Preliminaries on combinatorial cycles

Let us assume that the genus g, the number n of the marked points and the
degree d are given as before. Set e = 3g−3+n−d, and let Q(d; g, n) denote
the union of Q(p; g, n) for p ∈ P(d), and P(d; g, n) denote the subset of P(d)
consisting of p ∈ P(d) which are of the form p(q) for some q ∈ Q(d; g, n).

Proposition 3.1. Fix the co-degree e = (3g − 3 + n) − d ≥ 0. If n >
min{g−2, e} every partition of d into at most e+ 1 elements can be realized
as the partition p(qG) for some stable weighted graph G, i.e.

P(d; g, n) = P(d, e+ 1).

Proof. Let us assume that n ≥ min{e+1, g−1}. Since the stable weighted
graphs corresponding to P(d; g, n) have e edges and are connected, they can
have at most e+ 1 vertices, implying the inclusion P(d; g, n) ⊂ P(d, e+ 1).

For the reverse inclusion, first suppose that d ≤ n + 2g − 2, and that a
partition p = (a1, ..., ak) of d with k ≤ 3g − 2 + n− d is given. Define

r := min{g, k}, M := (2g − 2 + n− d) + min{g, k}

gi :=

{
1 if 1 ≤ i ≤ r
0 if r < i ≤M and mi :=





ai if 1 ≤ i ≤ r
ai + 3 if r < i ≤ k
3 if k < i ≤M

,

q :=
(
(gi,mi)

∣∣ i ∈ {1, ...,M}
)
.
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The assumptions on d and k imply that r ≥ 0, while p(q) = p. Moreover,

M∑

i=1

mi = d+ 3(M − r) = n+ 2(3g − 3 + n− d) ≥ 2(3g − 3 + n− d).

Then Lemma 2.6 implies that q ∈ Q(d; g, n), and consequently, p ∈ P(d; g, n).

Thus, it suffices to prove the inclusion for d = 2g − 2 + n + r, where
0 < r < g, i.e. to show that

P(d, g − r) ⊂ P(d; g, n).

Let p = (a1 ≥ ... ≥ ak > 0) be an element of P(d, g− r). We first claim that

k∑

i=1

⌊
ai − 1

3

⌋
≥ r.

If the above inequality is not satisfied

r − 1 ≥
k∑

i=1

⌊
ai − 1

3

⌋
≥

k∑

i=1

(ai
3
− 1
)

=
d

3
− k

⇒ 2g − 2 + n+ r = d ≤ 3(k + r)− 3 ≤ 3g − 3

⇒
{
g − 2 ≥ n+ r − 1 ≥ n and

e = g − r − 1 ≥ n.
Thus n ≤ min{e, g − 2}. This contradiction proves the claim.

Choose the integers 0 ≤ εi ≤ bai−1
3 c, i = 1, ..., k so that

(
k∑

i=1

⌊
ai − 1

3

⌋)
−
(

k∑

i=1

εi

)
= r.

Set

gi :=

⌊
ai − 1

3

⌋
+ 1− εi and

mi := ai − 3

⌊
ai − 1

3

⌋
+ 3εi > 0,

⇒ 3(gi − 1) +mi = ai, i = 1, ..., k.

Note that (gi,mi) ∈ Q and q = (gi,mi)
k
i=1 is a multi-set with p = p(q). We

have n = n(q, e) and g = g(q, e). Moreover,

k∑

i=1

mi = d− 3r = 2(g − 1− r) + n ≥ 2(g − 1− r) = 2e,

and Lemma 2.6 implies that q ∈ Q(d; g, n). Thus p ∈ P(d; g, n), and the
proof is complete.
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4. The general strategy for obtaining lower bounds

Let us define a partial order on P(d) by setting p1 � p2 if p1 refines p2.
Thus, 〈p,q〉 is non-zero only if p refines p(q). For q = ((gi,mi))

M
i=1

Λ(q) :=
1

|Aut(p(q))| 〈p(q),q〉 =
M∏

i=1

1

24gi × gi!
6= 0,

where Aut(p(q)) denotes the set of automorphisms of p(q) as a multi-set.
The rank r(d; g, n) of the matrix

R(d; g, n) :=

(
1

Λ(q)

〈
p,q

〉)

p∈P(d)
q∈Q(d;g,n)

is a lower bound for the rank of κd(Mg,n). Let 〈κ1, ..., κ3g−3+n〉dQ denote the

Q-vector space of degree d polynomials in κ1, κ2, . . . . The matrix R(d; g, n)
gives a surjective linear map

R(d; g, n) :
〈
κ1, ..., κ3g−3+n

〉d
Q
−→ Qr(d;g,n),

and thus a surjection

dg,n : κd
(
Mg,n

)
−→

〈
κ1, ..., κ3g−3+n

〉d
Q

Ker (R(d; g, n))
.

Definition 4.1. We call a class α ∈ R∗(Mg,n) combinatorially trivial if for
every stable weighted graph G

∫

[G]
α = 0.

We denote the quotients of R∗(Mg,n) and κ∗
(
Mg,n

)
by combinatorially

trivial tautological classes by R∗c(Mg,n) and κ∗c
(
Mg,n

)
respectively.

In other words, there is an induced isomorphism of vector spaces

dg,n : κdc
(
Mg,n

)
−→

〈
κ1, ..., κ3g−3+n

〉d
Q

Ker (R(d; g, n))
.

We would now like to describe a general strategy for achieving lower
bounds for the rank of κd(Mg,n). The strategy will be implemented in a
few cases in the following sections.

Definition 4.2. Fix the genus g and the number n of the marked points
for Mg,n, as well as the degree d and set e = 3g − 3 + n− d. Let < denote
a total ordering on P(d, e + 1) which refines the partial order �. A fine
assignment (with respect to a subset P of P(d) and the total order <) is a
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function f : P → P(d, e+ 1) satisfying the following properties:

(1) p � f(p)

(2) p � p′, p′ ∈ P(d, e+ 1) ⇒ f(p) < p′.

Fix a fine assignment f : P → P(d, e+1). Consider a block decomposition
of R(d; g, n) where, for every p0 ∈ P(d, e+ 1), the rows corresponding to all
q ∈ Q(p0; g, n) belong to the same block, while the columns corresponding
to all p ∈ f−1(p0) belong to the same block as well. In particular, associated
with every such p0 we may introduce the matrix

Rf (p0; g, n) =

(
1

Λ(q)

〈
p,q

〉)

q∈Q(p0;g,n)
p∈f−1(p0)

,

and will denote its rank by rf (p0; g, n).

Lemma 4.3. If f : P → P(d, e+ 1) is a fine assignment as above, then

r(d; g, n) ≥
∑

p∈P(d,e+1)

rf (p; g, n).

Proof. The fine assignment f determines a block decomposition of a sub-
matrix of R(d; g, n) which is upper triangular with respect to the order <.
Since the matrices Rf (p; g, n) correspond to the diagonal in this block form,
the above lemma follows.

Remark 4.4. More generally, let I be a totally ordered set with the order
< and f1 : P(d; g, n) → I and f2 : Q(d; g, n) → I be surjective functions so
that

• For p,p′ ∈ P(d; g, n) with p � p′, f1(p) < f1(p′).
• For q,q′ ∈ Q(d; g, n) with p(q) � p(q′), f2(q) < f2(q′).
• For p ∈ P(d; g, n) and q ∈ Q(d; g, n) with p � p(q), f1(p) < f2(p).

Then I determines a block decomposition of R(d; g, n), and R(d; g, n) is
upper triangular with respect to this decomposition. Thus

r(d; g, n) ≤
∑

p∈P
rank (Rf1,f2(p))

where Rf1,f2(p) is the sub-matrix of R(d; g, n) determined by the columns

corresponding to f−1
1 (p) and the rows corresponding to f−1

2 (p).

The restriction of every fine assignment to P ∩P(d, e+ 1) is the identity.
Theorem 1 is now an immediate consequence of Lemma 4.3.

Corollary 4.5. If n > min{g − 2, e} the rank of κdc(Mg,n) is greater than
or equal to p(d, e+ 1).

Proof. Take P = P(d; g, n) = P(d, e+1), f : P → P the identity map, and
< any refinement of �. Since rf (p; g, n) = 1 for all p ∈ P , we are done.
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5. The combinatorial kappa quotient in co-degree one

In this section, we apply Lemma 4.3 to the study of the rank of κ3g−4+n
c (Mg,n).

We will first handle the case g = 1 using explicit formulas for the integrals
of the ψ classes.

5.1. The combinatorial kappa quotient of M1,n in co-degree one.

Denote the set of k-element subsets of N = {1, ..., n} by
(
N
k

)
. For every

n-tuple of real numbers a1, ..., an, denote their i-th symmetric product by
σi(a1, ..., an). In other words, σ0(a1, ..., an) = 1 and

σi(a1, ..., an) =
∑

J∈(Ni )


∏

j∈J
aj


 .

The following theorem is essentially proved as Theorem 2.3 in [4].

Theorem 5.1. Suppose that the non-negative integers a1, ..., an are given
so that a1 + ...+ an = n. Then

(3)

∫

M1,n

n∏

j=1

ψ
aj
j =

1

24

(
n

a1, ..., an

)(
1−

n∑

i=2

σi(a1, ..., an)

i(i− 1)
(
n
i

)
)
.

Consider the graphs shown in Figure 1 together with the illustrated weight
functions, which determine stable weighted graphs Gi i = 0, ..., n− 1. With
the notation of the introduction Di = [Gi] for i = 0, ..., n− 2, while Dn−1 =
2[Gn−1], since |Aut(Gn−1)| = 2.

Theorem 5.2. For every element κ ∈ κn−1(M1,n)

(4)
1

24

∫

[Gn−1]
κ =

n−2∑

i=0

(
n− 2

i

)∫

[Gi]
κ.

Proof. Let p̃ = (b1, ..., bk) ∈ P(n − 1) be a partition of n − 1 of length k
and set p = (a1, ..., ak) where ai = bi + 1 for i = 1, ..., k. Set

F (p) = F (a1, ..., ak) =

∫

[Gn−1]
κp̃ − 24

n−2∑

i=0

(
n− 2

i

)∫

[Gi]
κp̃.

With N = {1, ..., k}, I◦ = N−I for every I ⊂ N , and following the notation
set in the proof of Theorem 5.1

F (p) =

(
σ(N)

p(N)

)
−
∑

I⊂N

(
σ(N)− |N | − 1

σ(I)− |I| − 1

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N
(|J | − 2)!

(
σ(N)− |N | − 1

σ(I)− |I| − 1

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

)
.
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The above equation may be used to define the function F for every par-
tition p (relaxing the condition ai > 1 for i = 1, ..., k). Set

pi = (a1, ..., ai−1, ai − 1, ai+1, ..., ak).

Assuming ai > 1 for i = 1, ..., k,

F (pi) =
ai

σ(N)

(
σi(N)

pi(N)

)
−
∑

i∈I⊂N

aiλ(I)

σ(I)λ(N)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

−
∑

i∈I◦⊂N

ai(λ(I◦) + 1)

σ(I◦)λ(N)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N
i∈J

(ai − 1)λ(I)

σJ(I)λ(N)
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N
i∈I−J

aiλ(I)

σJ(I)λ(N)
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N
i∈I◦

ai(λ(I◦) + 1)

σ(I◦)λ(N)
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

)
.

Summing over i = 1, ..., k we obtain

k∑

i=1

F (pi) =

(
σ(N)

p(N)

)
−
∑

I⊂N

λ(I) + (λ(I◦) + 1)

λ(N)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N

λ(I) + (λ(I◦) + 1)

λ(N)
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

)
.

Thus

(5)

k∑

i=1

F (pi) = F (p).
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The above equation may be used to define the function F for every partition
p (relaxing the condition ai > 1 for i = 1, ..., k). Set

pi = (a1, ..., ai−1, ai − 1, ai+1, ..., ak).

Assuming ai > 1 for i = 1, ..., k,

F (pi) =
ai

σ(N)

(
σi(N)

pi(N)

)
−
∑

i∈I⊂N

aiλ(I)

σ(I)λ(N)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

−
∑

i∈I◦⊂N

ai(λ(I◦) + 1)

σ(I◦)λ(N)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N
i∈J

(ai − 1)λ(I)

σJ(I)λ(N)
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N
i∈I−J

aiλ(I)

σJ(I)λ(N)
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N
i∈I◦

ai(λ(I◦) + 1)

σ(I◦)λ(N)
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

)
.

Summing over i = 1, ..., k we obtain

k∑

i=1

F (pi) =

(
σ(N)

p(N)

)
−
∑

I⊂N

λ(I) + (λ(I◦) + 1)

λ(N)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N

λ(I) + (λ(I◦) + 1)

λ(N)
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

)
.

ε(v) = (1, n) ε(v) = (1, n− i+ 2) ε(w) = (0, i+ 2)

Gn−1 Gi i = 0, ..., n− 2

1
2
3

n

1
2
3

i+ 2

i+ 3

i+ 4
i+ 5

n

Figure 1. The stable weighted graph Gi for i = 0, ..., n− 1
is illustrated. Each stable weighted graph corresponds to a
divisor in M1,n

Figure 1. The stable weighted graph Gi for i = 0, ..., n− 1
is illustrated. Each stable weighted graph corresponds to a
divisor in M1,n

If p̂ = (a1, ..., ak, 1) is obtained by adding a 1 to p,

F (p̂) =(σ(N) + 1)

(
σ(N)

p(N)

)
−

∑

I⊂N
Î=I∪{k+1}

(σ(I) + 1)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

−
∑

I⊂N
Î=I

(σ(I◦) + 1)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J⊂I⊂N
Ĵ=J∪{k+1},Î=I∪{k+1}

(
(|J | − 1)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

))

+
∑

J⊂I⊂N
Ĵ=J,Î=I∪{k+1}

(σJ(I) + 1)

(
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

))

+
∑

J⊂I⊂N
Ĵ=J,Î=I

(σ(I◦) + 1)

(
(|J | − 2)!

(
λ(N)

λ(I)

)(
σJ(I)

pJ(I)

)(
σ(I◦)
p(I◦)

))

+
∑

J={i}⊂I⊂N
Ĵ=J∪{i,k+1},Î=I∪{k+1}

ai
σ(I)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

(σ(N) + 1)F (p)−
∑

I⊂N

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

+
∑

J={i}⊂I⊂N

ai
σ(I)

(
λ(N)

λ(I)

)(
σ(I)

p(I)

)(
σ(I◦)
p(I◦)

)

⇒ F (p̂) = (σ(N) + 1)F (p).
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The above computation, together with (5), reduce the proof to the case
where k = 1 and a1 = 1, which is straight forward.

Remark 5.3. The above proof uses the combinatorial formulas for the
terms appearing in F (p) to show that F (p) (in a sense) satisfies the String
and the Dilation equations. One can present a purely geometric proof for
these two equations, and obtain a proof of Theorem 5.2 which does not use
Theorem 5.1.

Theorem 5.4. The rank of κn−1
c (M1,n) is equal to n− 1.

Proof. One needs to show that the rank of R(n−1; 1, n) is n−1. The proof
for n ≤ 4 may be done by direct computation. We may thus assume that
n > 4. Since the total number of rows in R(n − 1; 1, n) is n, Theorem 5.2
implies that r(n − 1; 1, n) is at most n − 1. The rows of R(n − 1; 1, n)
are in correspondence with the divisors D0, D1, . . . , Dn−1. If the rank of
R(n − 1; 1, n) is less than n − 1 there is a divisor E =

∑n−1
i=1 diDi such

that
∫
E κ = 0 for all κ ∈ κn−1(M1,n). Note that E is chosen so that the

coefficient of D0 is zero. We may compute the integral of κn−1 over E and
obtain

0 =

∫

E
κn−1 = dn−1

∫

Dn−1

κn−1.

Thus dn−1 = 0. For a κ class of the form κ̃ = κi,n−1−i (where i =
1, 2, . . . , bn−1

2 c) the integral of κ̃ over Dj is zero unless j = i or j = n−1− i.
Using Theorem 5.1 we find

0 =

∫

E
κ̃ = di

∫

Di

κ̃+ dn−1−i

∫

Dn−1−i

κ̃

=
1

24
(di + dn−1−i).

In particular, dn−1−i = −di. Similarly, for 1 < i ≤ bn−1
2 c and the κ class

κ̂ = κ1,i−1,n−1−i the integral of κ̂ over Dj is zero unless j belongs to the set
{1, i− 1, i, n− 1− i, n− i, n− 2}. Thus, using Theorem 5.1 again, we find

0 =

∫

E
κ̂ = d1

(∫

D1

κ̂−
∫

Dn−2

κ̂

)
+ di−1

(∫

Di−1

κ̂−
∫

Dn−i

κ̂

)

+ di

(∫

Di

κ̂−
∫

Dn−i−1

κ̂

)

=
1

24

(
−
(
n− 2

i− 1

)
d1 − (n− i)di−1 + idi

)
.
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Note that the above equation is also true for i = 2. By induction on i we
conclude di =

(
n−2
i−1

)
d1. We may thus assume that d1 = 1, i.e.

E =

bn−1
2 c∑

i=1

(
n− 2

i− 1

)
(Di −Dn−1−i).

Finally, we integrate the class κ1,1,...,1 over E. We first note that using String
and Dilation equations and induction on k one may prove

∫

M1,2k

ψ2
1 . . . ψ

2
k =

2k−1k!(k − 1)!

24
.

Using the above explicit formula we have
∫

Di

κ1,...,1 =

(
n− 1

i

)(
2i

2, 2, . . . , 2

)(
2n−i−2(n− i− 1)!(n− i− 2)!

24

)

=

((
n−1
i

)
(2i)!(2n− 2− 2i)!

24× 2n−1

)(
(2n− 2i− 3)!

((2n− 2i− 3)!!)2

)

From here we compute

0 =

∫

E
κ1,...,1 =

bn−1
2 c∑

i=1

(
n− 2

i− 1

)(∫

Di

κ1,...,1 −
∫

Dn−1−i

κ1,...,1

)

=

bn−1
2 c∑

i=1

((
n−2
i−1

)(
n−1
i

)
(2i)!(2n− 2− 2i)!

24× 2n−1

)
(In−i−1 − Ii)

where Ij =
(2j − 1)!

((2j − 1)!!)2 .

Since
Ij+1

Ij
= (2j)

(2j+1) < 1 for all j, we conclude that In−1−i − Ii < 0 for

0 < i < n−1
2 , i.e. the right-hand-side of the above equality is negative. The

contradiction completes the proof.

Combined with the result of Petersen [9] on the structure of the tautolog-
ical ring of M1,n, the above theorem implies that the rank of κn−1(M1,n)
is n− 1.

5.2. The ψ classes of length two. Fix g > 1 and m > 3g−1, and consider
the square matrix

M(m; g) = (nj(h,m)) h=0,1,...,g
j=0,2,3,...,g+1

, where

nj(h,m) := 24h × h!×
∫

Mh,m−3h+3

ψm−j1 ψj2 j = 0, 1, ...,m.

We begin our investigation with the study of the entries of this matrix. Let
Pj(h) = nj(h, 3h− 1).
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Lemma 5.5. Pj is a polynomial of degree j, with the leading coefficient

6j

(2j + 1)!!
.

Proof. The claim is trivial for j = 0. Note that by definition

Pj(h) = 〈τjτ3h−1−j〉.
Applying the KdV equation in the case j ≥ 1 we get:

Pj(h) =

(
1

2j + 1
− 2

)
Pj−1(h) +

(
1

2j + 1
− 1

)
Pj−2(h)

+
1

2j + 1

((
h
j
3

)
+ 2

(
h
j−1

3

))

+
6h

2j + 1

(
4∑

k=0

(
4

k

)
Pj−1−k(h− 1)

)
.

(6)

Both claims are then quick (inductive) implications of (6).

Let us assume that Pj(h) =
∑j

k=0A
j
kh

j−k.

Lemma 5.6. With the above notation fixed, nj(h,m) is a polynomial in the
variables h and m of degree j. If

nj(h,m) =
∑

p+q≤i
p,q≥0

Aj(p, q)h
pmq,

then Aj(p, q) 6= 0 for p+ q = j.

Proof. For j = 0, n0(h,m) = 1 and the claim is trivial. Suppose now that

ni(h,m) =
∑

p+q≤i
Ai(p, q)h

pmq,

for 0 ≤ i < j. Suppose that m > 3h − 1 is an arbitrary integer and j > 0.
From the String equation
∫

Mh,m−3h+3

ψm−j1 ψj2 =

∫

Mh,m−3h+2

ψm−j−1
1 ψj2 +

∫

Mh,m−3h+2

ψm−j1 ψj−1
2

we obtain

nj(h,m) = nj(h,m− 1) + nj−1(h,m− 1)

= ... = nj(h, 3h− 1) +

m−1∑

k=3h−1

nj−1(h, k)

= Pj(h) +
∑

p+q<j

Aj−1(p, q)hp

(
m−1∑

k=3h−1

kq

)
(7)
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Equation (7) determines nj(h,m) as a polynomial of degree j. The degree
j part of nj may be computed from the degree j − 1 part of nj−1. More

precisely, let aj(i) := Aj(j − i, i) and set mj(h,m) =
∑j

i=0 aj(i)h
j−imi.

Then

j∑

i=0

aj(i)h
j−imi = Aj0h

j +

j∑

i=1

aj−1(i− 1)(hj−imi − 3ihj)

i!

=

(
6j

(2j + 1)!!
−

j−1∑

i=0

aj−1(i)3i+1

(i+ 1)!

)
hj +

j∑

i=1

aj−1(i− 1)

i!
hj−imi.

From here

aj(i) =
aj−i∏i
k=1 k!

, where aj =

{
6j

(2j+1)!! −
∑j

i=1
3i∏i

k=1 k!
aj−i if j > 0

1 if j = 0
.

For every rational number x and every prime number p let ordp(x) denote

the integer k such that there are integers a, b such that x = pk(a/b) and
p - ab. Using the above recursive formula and by induction on j

ord2(aj) = −
j∑

i=1

ord2(i!) ∀ j = 0, 1, 2, . . .

⇒ 0 = ord2(a0) = ord2(a1) > ord2(a2) > ord2(a3) > ord2(a4) > . . . .

Thusaj 6= 0, and consequently Aj(p, q) 6= 0 for p+ q = j.

Lemma 5.6 implies that we may formally extend nj(h,m) and define it
for the values of h,m which do not necessarily satisfy m ≥ 3h− 1 or m ≥ j.
For m ≥ 3h − 1 we trivially have nj(h,m) = nm−j(h,m). It happens that
the aforementioned symmetry extends to a slightly larger range of values.

Lemma 5.7. For every j satisfying j ≥ 2h+ 1, nj(h, j − 1) = 0.

Proof. If j ≥ 3h, by the String equation

nj(h, j − 1) = nj(h, j)− nj−1(h, j − 1) = 1− 1 = 0.

The KdV equation implies that for every i, j 6= 0

(2i+ 1)〈τiτjτn+2
0 〉h =(2n+ 1)〈τi−1τjτ

n+1
0 〉h +

1

4
〈τi−1τjτ

n+4
0 〉h−1

+
1

24h × h!

n+1∑

p=0

(
n+ 1

p

)(
g
i−p

3

)(8)
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Setting i = m− j and n = m− 3h− 1, (8) implies

nj(h,m) =
2m− 6h− 1

2m− 2j + 1
nj−1(h,m− 1)

+
6h

2m− 2j + 1
nj−1(h− 1,m− 1) +

1

2m− 2j + 1
qj(h,m),

qj(h,m) :=
m−3h∑

p=0

(
m− 3h

p

)(
h
j−p

3

)
=

j∑

p=0

(
m− 3h

p

)(
h
j−p

3

)
.

(9)

The left-hand-side and the right-hand-side of the first equation in (9) are
rational functions in h,m, and (9) is thus satisfied for all values of h and m.
Setting m = j − 1 in (9)

nj(h, j− 1) = (6h+ 3− j)nj−1(h, j− 2)− 6hnj−1(h− 1, j− 2)− qj(h, j− 1).

Fixing j, all the terms in qj(h, j − 1) are zero j ≥ 3h+ 1. If j < 3h+ 1

qj(h, j − 1) =

b j3c∑

k=0

(−1)j−3k

(
3h− 3k

j − 3k

)(
h

k

)

is the coefficient of xj in
(

h∑

k=0

(−1)k
(
h

k

)
x3k

)( ∞∑

`=0

(
3h− j − `

`

)
x`

)
= (1− x3)h

1

(1− x)3h−j+1

= (1 + x+ x2)h(1− x)j−1−2h.

For 2h + 1 ≤ j < 3h + 1 the above expression is a polynomial in x of
degree j − 1 and the coefficient of xj in it is thus zero. This implies that
qj(h, j−1) = 0 for all h satisfying j ≥ 2h+ 1. Thus, for every h, j satisfying
j ≥ 2h+ 1

(10) nj(h, j − 1) = (6h+ 3− j)nj−1(h, j − 2)− 6hnj−1(h− 1, j − 2).

Note that nj(0,m) =
(
m
j

)
, and nj(0, j − 1) is thus zero. Let h be the

smallest genus such that there is some j with j ≥ 2h+1 and nj(h, j−1) 6= 0,
and let j be the largest such j. Then, j > 2h and j− 1 > 2(h− 1), implying
nj+1(h, j) = nj(h − 1, j − 1) = 0 by the minimality assumption on (h, j).
Then (10) gives nj(h, j − 1) = 0. This contradiction proves the lemma.

From Lemma 5.7, for every j ≥ 2h

nj(h, j) = nj+1(h, j + 1)− nj+1(h, j)

= nj+2(h, j + 2)− nj+2(h, j + 1) (since nj+1(h, j) = 0)

= ... = nj+3h(h, j + 3h) = 1.

Since n0(h,m) = 1, this gives the equality

n0(h,m) = nm(h,m) ∀ m ≥ 2h.
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Proposition 5.8. For every m ≥ 2h ≥ 0 and every 0 ≤ j ≤ m
nj(h,m) = nm−j(h,m).

Proof. Denote the claim of the proposition for (j, h,m) by P(j, h,m), i.e.
we claim that for j = 0, ...,m and m ≥ 2h ≥ 0, P(j, h,m) is true.

For h = 0 and 0 ≤ j ≤ m, P(0, j,m) is trivial. Suppose that h is the
smallest genus such that for some 0 ≤ j ≤ m satisfying m ≥ 2h, P(h, j,m)
is not true. Take m to be the largest possible value such that there is some j
with P(j, h,m) true. Fix h,m as above and let j be the largest integer with
P(j, h,m) true. Lemma 5.7 implies that j < m. Moreover, the assumptions
on (j, h,m) implies that P(j + 1, h,m+ 1) and P(j + 1, h,m) are true. The
String equation

nj(h,m) = nj+1(h,m+ 1)− nj+1(h,m)

gives

P(j + 1, h,m) & P(j + 1, h,m+ 1) ⇒ P(j, h,m).

This completes the proof of the proposition.

Since in the column of M(m; g) indexed by j the coefficient of hj is a
non-zero constant, subtracting appropriate multiples of the columns cor-
responding to i = 0, 2, ..., j − 1 from the column corresponding to j, for
j = 2, ..., g + 1 kills the monomials of degree 2, ..., j − 1, while leaving the
determinant unchanged. The determinant

dg(m) = Det(M(m; g))

is thus equal to the determinant of a matrix of the form

M ′(m; g) :=
(
ajh

j + bj−1(m)h
)

h=0,...,g
j=0,2,3,...,g+1

,

where the constants aj are determined in the proof of Lemma 5.6 and
bj(m) is a polynomial of degree at most i in m (and with b−1(m) = 0)
for j = 1, ..., g.

Considering the order of the coefficient cj of mj in bj(m) in the above
process, one can easily observe that

ord2(cj) = −
j∑

i=1

ord2(i!),

and cj is thus always non-zero. As a consequence, bj(m) is a polynomial of
degree j.



24 EAMAN EFTEKHARY AND IMAN SETAYESH

Subtracting h times the row corresponding to 1 from the row correspond-
ing to h for h = 2, ..., g keeps the determinant unchanged. We thus have

dg(m) = Det




a2 + b1(m) a3 + b2(m) ... ag+1 + bg(m)
(22 − 2)a2 (23 − 2)a3 ... (2g+1 − 2)ag+1

(32 − 3)a2 (33 − 3)a3 ... (3g+1 − 3)ag+1
...

...
. . .

...
(g2 − g)a2 (g3 − g)a3 ... (gg+1 − g)ag+1




This implies that

dg(m) = g!

(
g+1∏

h=2

ah

)
Det




1 −b̂1(m) −b̂2(m) ... −b̂g(m)
1 1 1 ... 1
1 2 22 ... 2g

...
...

...
. . .

...
1 g g2 ... gg




= (−1)g+1

(
g∏

h=2

(ahh!)

)
(cgm

g + lower degree terms) ,

where b̂j(m) = bj(m)/aj+1. We conclude

Lemma 5.9. The determinant dg(m) of the matrix M(m; g) is a polynomial
in m of degree g.

In other words, except for at most g values of m, the matrix M(m; g) is
a matrix of full rank.

Theorem 5.10. There is a non-zero constant Cg, which only depends on
the genus g, such that determinant dg(m) is of the form

Cg(m− 2)

2g+1∏

i=g+3

(m− i).

Proof. By Lemma 5.9, it suffices to show that

dg(2) = dg(g + 3) = dg(g + 4) = ... = dg(2g + 1) = 0.

The first row of M(2; g) consists of the following numbers

(1,

(
2

2

)
,

(
2

3

)
, ...,

(
2

g + 1

)
) = (1, 1, 0, ..., 0).

Theorem 5.1 implies that the second row of M(2; g) consists of the following
numbers

(1, n2(1, 2), n3(1, 2), ..., ng+1(1, 2)) = (1,

(
2

2

)
−
(

0

1

)
, 0, ..., 0).

Thus the first two rows of M(2; g) are equal and dg(2) = 0 for all g ≥ 1.
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For g + 3 ≤ m ≤ 2g + 1, let A(m; g) denote the sub-matrix of M(m; g)
which corresponds to the rows h = 0, ...,

⌊
m
2

⌋
and the columns j = m −

g − 1,m − g, ...,
⌊
m−1

2

⌋
. Similarly, let B(m; g) denote the sub-matrix of

M(m; g) which corresponds to the rows h = 0, ...,
⌊
m
2

⌋
and the columns

j =
⌈
m+1

2

⌉
,
⌈
m+1

2

⌉
+ 1, ..., g + 1.

Proposition 5.8 implies that the columns of B(m; g) are the same as the
columns of A(m; g). Subtraction the jth column of M(m; g) from its (m−j)
column for j = m − g − 1,m − g, ...,

⌊
m−1

2

⌋
produces a matrix with the

same determinant, and with zeros in the block replaced for B(m; g). If the
determinant is non-zero the sum of the number of columns and the number
of rows in B(m; g) is at most g+1, i.e. the total number of rows in M(m; g).
Thus,

g + 1 ≥
(⌊m

2

⌋
+ 1
)

+

(
g + 2−

⌈
m+ 1

2

⌉)

⇔
⌈
m+ 1

2

⌉
≥
⌊m

2

⌋
+ 2.

This contradiction implies that dg(m) = 0 for m = g + 3, g + 4, ..., 2g + 1.
Since dg has at most g roots, it is a constant multiple of

(m− 2)

2g+1∏

i=g+3

(m− i).

Remark 5.11. Explicit computation, using computers, shows that

dg(m) =
(−3)(

g+1
2 )

(2g + 1)!!× g!
(m− 2)

2g+1∏

i=g+3

(m− i) for g ≤ 50.

However, we do not have a proof of the above formula in general.

5.3. The rank of κ3g−4+n
c (Mg,n) for g > 1. As an application of Lemma 4.3

and Theorem 5.10 we examine the kappa ring in co-degree one for g > 1.
With d = 3g − 4 + n, we get 3g − 2 + n − d = 2. We choose P to be
the union of P(d; 2) of partition of length 2 with the set of all partitions
of the form p′ = (a1 > b1 ≥ b2 > 0) with b1 + b2 ≤ a1, and define
f(p′) = (a1 ≥ a2 = b1 + b2 > 0). The order < is defined by setting (d)
to be the largest element in P(d, 2), and setting (a1 ≥ a2 > 0) greater than
(b1 ≥ b2 > 0) if a1 ≥ b1. Let us fix p = (a1 ≥ a2 > 0) and study the
sub-matrices Rf (p; g, n). In the following discussions we will prove that
Rf (p; g, n) has full row rank for a2 > 4.

Let us first assume that a1 > a2 ≥ 3g − 2 ≥ 4, while a2 ≤ n − 2. For
a corresponding partition q = {(g1,m1), (g2,m2)} ∈ Q(p; g, n), g2 is an
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arbitrary genus between 0 and g, g1 = g− g2, and mi = ai + 3− 3gi, i.e. the
matrix Rf (p; g, n) has precisely g + 1 rows. The columns correspond to

p0 = (a1 ≥ a2), pj = (a1 ≥ (a2 − j) ≥ j) j = 1, ...,
⌊a2

2

⌋
≥
⌊

3g

2

⌋
− 1.

The (g + 1) × (ba2/2c + 1) matrix Rf (p; g, n) consists of the entries mhj ,
with h = 0, ..., g and j = 0, ..., ba2/2c, which are given by

mhj =





(∫
Mg−h,a+3h

ψa1+1
1

)(∫
Mh,a2−3h+4

ψa2+1
1

)
if j = 0

(∫
Mg−h,a+3h

ψa1+1
1

)(∫
Mh,a2−3h+5

ψa2−j+1
1 ψj+1

2

)
if j 6= 0,

where a = a1 − 3g + 4. Thus, the rank of Rf (p; g, n) is equal to the rank of
the matrix N(a2 + 2; g), where

N(m; g) :=
(
nj(h,m)

)
h=0,...,g

j=0,2,3,...,bm/2c
.

Sincem = a2+2 ≥ 3g ≥ 6, the matrixM(g;m) is a sub-matrix ofN(g;m).
This sub-matrix is full-rank by Theorem 5.10, and the rank rf (p; g, n) of
Rf (p; g, n) is equal to g + 1. Thus,

∑

p=(a1>a2)∈P (d)
3g−2≤a2≤n−2

rf (p; g, n) ≥




∑

p=(a1>a2)∈P (d)
3g−2≤a2≤n−2

(g + 1)




When a1 = a2 ≥ 3g − 2, the possible combinatorial cycles correspond to
the values 0 ≤ g2 ≤ bg/2c, and with a similar argument we have

rf (p; g, n) =

⌊
g + 2

2

⌋
.

For arbitrary values of a2 > 4, for

q =
{

(g1,m1), (g2,m2)
}
∈ Q(p; g, n)

we have

max

{
0,

⌈
a2 + 2− n

3

⌉}
≤ g2 ≤ min

{⌊
a2 + 2

3

⌋
, g

}
.

Let rowf (p; g, n) denote the number of rows in Rf (p; g, n). The matrix
Rf (p; g, n) consists of the multiples of a subset of the rows in the matrix
N(a2 + 2;h) where h = min{g, b(a2 + 2)/3c}. Its rank is thus equal to
rowf (p; g, n).

Finally, we gather the rows and the columns corresponding to the par-
titions of the form (a1 ≥ a2 > 0) with a2 ∈ {0, 1, 2, 3, 4} in one block (see
Remark 4.4). The corresponding partitions of d consist of the following list:

A =
{

(d), (d− 1, 1), (d− 2, 2), (d− 3, 3), (d− 4, 4)
}
.
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For every q ∈ Q(d; g, n) and every partition p in

B =
{

(d),(d− 1, 1), (d− 2, 2), (d− 2, 1, 1), (d− 3, 3), (d− 3, 2, 1), (d− 3, 1, 1, 1),

(d− 4, 4), (d− 4, 3, 1), (d− 4, 2, 2), (d− 4, 1, 1, 1, 1), (d− 4, 2, 1, 1)
}

if 〈p,q〉 6= 0 then p(q) ∈ A. There are 11 such q ∈ Q(d; g, n) which, together
with the first 11 partitions of d in the above set of 12 elements, determine
an 11× 11 sub-matrix of Rf (d; g, n).

Using the explicit formulas in Table 1 for some of the ψ integrals, one
may compute the determinant of the above 11 × 11 matrix. Surprisingly,
the determinant is independent of d and equals

−2592(g − 1)2(4928g4 − 275516g3 − 437138g2 + 62924g − 334941)

42109375
.

Thus, the aforementioned 11× 11 matrix is always of rank 11.
Gathering the above information one arrives at the following theorem.

Theorem 5.12. For g > 1 and d = 3g − 4 + n, the rank of κdc(Mg,n) is
equal to ⌈

(n+ 1)(g + 1)

2

⌉
− 1.

Proof. For d = 3g − 4 + n, the lower bound on the rank is given by the
sum of the rank of the above 11× 11 matrix, plus the following sum

∑

p=(a1≥a2>0)
5≤a2≤(3g−4+n)/2

rf (p; g, n).

The above computations may then be used to compute this lower bound
explicitly. Let row(d; g, n) denote the number of rows in R(d; g, n). For
g > 1 we thus have

rank(R(d; g, n)) ≥ 11 +
∑

p=(a1≥a2>4)

rf (p; g, n)

= row(d; g, n) =

⌈
(n+ 1)(g + 1)

2

⌉
− 1.

(11)

Since rank(R(d; g, n)) can not be larger than row(d; g, n), the inequality in
(11) is in fact an equality.

The following point of view was brought to the attention of the authors by
one of the anonymous referees. By the work of Al-Aidroos [1] it is known
that R3g+n−4(Mg,n) is dual to R1(Mg,n) and that the latter is generated by

κ1, ψ1, . . . , ψn and the boundary divisors in A1(Mg,n) [7]. In particular, a
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Table 1. Small ψ integrals

p = (a1, ..., ak) The integral g!× 24g ×
∫
Mg,d(p)+3−3g

∏k
i=1 ψ

ai
i

(d)
1

(d, 2) (
d+2−g

2

)
+ g(2g+3)

5

(d, 3) (
d+3−g

3

)
+
(
d+3−g

1

)g(2g+3)
5 − g(8g2+60g+37)

105

(d, 4)
(
d+4−g

4

)
+
(
d+4−g

2

)g(2g+3)
5 −

(
d+4−g

1

)g(8g2+60g+37)
105

+g(g+1)(2g+3)(2g+5)
70

(d, 5)
(
d+5−g

5

)
+
(
d+5−g

3

)g(2g+3)
5 −

(
d+5−g

2

)g(8g2+60g+37)
105

+
(
d+5−g

1

)g(g+1)(2g+3)(2g+5)
70 − g(2g+3)(8g3+84g2+55g+84)

1155

(d, 2, 2)
6
(
d+4−g

4

)
+
(
d+4−g

2

)2g(2g+3)
5 + g(4g3−4g2−41g−9)

25

(d, 2, 2, 2) 90
(
d+6−g

6

)
+
(
d+6−g

4

)18g(2g+3)
5 +

(
d+6−g

2

)3g(4g3−4g2−41g−9)
25

+g(8g5−60g4−70g3+1275g2+1067g+30)
125

(d, 2, 2, 2, 2)
2520

(
d+8−g

8

)
+
(
d+8−g

6

)360g(2g+3)
5 +

(
d+8−g

4

)36g(4g3−4g2−41g−9)
25

+
(
d+8−g

2

)4g(8g5−60g4−70g3+1275g2+1067g+30)
125

+g(16g7−288g6+1192g5+7440g4−57671g3−120522g2−34677g−20490)
625

( d,3,2) 10
(
d+5−g

5

)
+
(
d+5−g

3

)4g(2g+3)
5 −

(
d+5−g

2

)g(8g2+60g+37)
105

+
(
d+5−g

1

)g(4g3−4g2−41g−9)
25 − g(2g+3)(8g3+12g2−467g−78)

525

(d, 4, 2)
15
(
d+6−g

6

)
+
(
d+6−g

4

)7g(2g+3)
5 −

(
d+6−g

3

)3g(8g2+60g+37)
105

+
(
d+6−g

2

)g(76g3+44g2−419g−51)
350 −

(
d+6−g

1

)g(2g+3)(8g3+12g2−467g−78)
525

+g(g+2)(2g+1)(2g+3)(2g2−11g−61)
350

(d, 3, 3)
20
(
d+6−g

6

)
+
(
d+6−g

4

)8g(2g+3)
5 −

(
d+6−g

3

)2g(8g2+60g+37)
105

+
(
d+6−g

2

)2g(4g3−4g2−41g−9)
25 −

(
d+6−g

1

)2g(2g+3)(8g3+12g2−467g−78)
525

+g(64g5+384g4−13376g3−76224g2−71315g−15933)
11025

(d, 3, 2, 2)

210
(
d+7−g

7

)
+ 10g(2g + 3)

(
d+7−g

5

)
− 6g(8g2+60g+37)

35

(
d+7−g

4

)

+7g(4g3−4g2−41g−9)
25

(
d+7−g

3

)
− 2g(2g+3)(8g3+12g2−467g−78)

525

(
d+7−g

2

)

+g(8g5−60g4−70g3+1275g2+1067g+30)
125

(
d+7−g

1

)

−g(32g6−176g5−3300g4+24440g3+96943g2+53031g+12780)
2625
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kappa class κ ∈ κ3g+n−4(Mg,n) is trivial if and only if it is combinatorially
trivial and ∫

[Mg,n]
κκ1 =

∫

[Mg,n]
κψi = 0, i = 1, . . . , n.

Let us denote the functional on κd(Mg,n) which are defined as

κ 7→
∫

[Mg,n]
κ1κ and κ 7→

∫

[Mg,n]
ψ1κ = · · · =

∫

[Mg,n]
ψnκ

by κ̂1 and ψ̂, respectively. The rank of κ3g+n−4(Mg,n) is equal to d (g+1)(n+1)
2 e+

ε(g, n), where ε(g, n) ∈ {0, 1,−1}. For g = 2 the quotient map from
κ∗
(
Mg,n

)
to its combinatorial quotient is an isomorphism by the work of

authors [3], and we find ε(2, n) = −1.

Theorem 5.13. For g > 2 and n > 0 the rank of κ3g+n−4(Mg,n) is equal
to ⌈

(n+ 1)(g + 1)

2

⌉
+ 1.

Proof. We continue to use the notation set in the proof of Theorem 5.12
and set d = 3g + n − 4. In order to prove the theorem we first show that

the linear functional κ̂1 is independent from the d (g+1)(n+1)
2 e− 1 functionals

corresponding to the integration over stable weighted graphs in Mg,n.

The aforementioned functional may be used to add a row to the ma-
trix R(d; g, n). Denote the new matrix by R′(d; g, n). Correspondingly, we
may define R′f (d; g, n). The 12 partitions in B determine 12 columns in

R′(d; g, n). The partitions q ∈ Q(d; g, n) with p(q) ∈ A and the particular
linear functional constructed above determine 12 rows of R′(d; g, n). These
12 rows and 12 columns determine a 12×12 sub-matrix X of R′(d; g, n) and
the proof of Theorem 5.12 may be copied to show that

rank(R′(d; g, n)) ≥ rank(X) +
∑

p=(a1≥a2>4)

rf (p; g, n)

= rank(X) +

⌈
(n+ 1)(g + 1)

2

⌉
− 12.

(12)

The entries of X may be computed from an extended version of Table 1,
which contains the integrals of ψ classes corresponding to the following 7
partitions as well:

(d, 6), (d, 5, 2), (d, 4, 3), (d, 4, 2, 2), (d, 3, 3, 2), (d, 3, 2, 2, 2) and (d, 2, 2, 2, 2, 2).
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The determinant of X may subsequently be computed. Surprisingly, the
determinant is once again independent of d and only depends on g:

det(X) =
331776 g(g − 2)(g − 1)3q(g)

922063720703125

where q(g) = 14764032g7 + 43415424g6 + 158902720g5 + 928792100g4

− 21119392g3 − 4217474459g2 − 4089074775g − 1301969475.

Since q(g) does not have any integer roots, the matrix X is invertible for
g > 2. This means that for g > 2, ε(g, n) is either 0 or 1. Furthermore,

if ε(g, n) = 0 the functional ψ̂ is a linear combination of κ̂1 and the linear
functionals corresponding to integration over divisors.

Next, we refine the above argument by adding another row to R′(d; g, n),

which corresponds to ψ̂. Denote the resulting matrix by R′′(d; g, n). Let

B′ = B ∪ {(d− 5, 5), (d− 5, 4, 1), (d− 5, 3, 2), (d− 5, 1, 1, 1, 1, 1)}
and A′ = A ∪ {(d − 5, 5)}. The sets A′ and B′ correspond to a 16 × 16
sub-matrix Y of R′′(d; g, n), while the argument of Theorem 2 implies that

rank(R′′(d; g, n)) ≥ rank(Y ) +
∑

p=(a1≥a2>5)

rf (p; g, n)

= rank(Y ) +

⌈
(n+ 1)(g + 1)

2

⌉
− 15.

Once again, the entries of Y may be computed from an extended version of
Table 1, and the determinant of Y may subsequently be computed. This
time, the determinant is no longer independent of d and we find

det(Y ) =
g(g − 1)3(g − 2)(d− 3g + 1)(d− 3g + 2)p(g)

(
d7 +

∑6
i=0 pi(g)di

)

65262637440000000000
,

where p(g) = 14764032g7 + 43415424g6 + 158902720g5 + 928792100g4

− 21119392g3 − 4217474459g2 − 4089074775g − 1301969475

and pi(g) are polynomials of g with rational coefficients for i = 0, 1, ..., 6.

Fix the genus g > 2. Since d = 3g − 4 + n, when the number n of the
marked points is sufficiently large the determinant of Y is nonzero. In other

words, κ̂1, ψ̂ and the functionals corresponding to stable weighted graphs
are independent when n is sufficiently large. This proves the theorem when
n is sufficiently large.

Keep g > 2 fixed and suppose that the claim is not true over someMg,n.
Choose n to be the largest positive integer such that R′′(3g − 4 + n; g, n)

is not full-rank. Since ψ̂ is independent from the other functionals over
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κ3g−3+n(Mg,n+1) there is some κ ∈ κ3g−3+n(Mg,n+1) such that κ is combi-
natorially trivial,

∫

[Mg,n+1]
κ(κ1 − ψn+1) = 0 and

∫

[Mg,n+1]
κψ1 6= 0.

Let π : Mg,n+1 → Mg,n denote the map which forgets the last marking.
Then π∗κ1 = κ1 − ψn+1 and we find

∫

[Mg,n]
π∗(κ)κ1 =

∫

[Mg,n+1]
κπ∗(κ1) = 0 and

∫

D
π∗(κ) =

∫

π−1(D)
κ = 0 ∀ divisor D in Mg,n.

Since the rank of κ3g−4+n(Mg,n) is d(g + 1)(n+ 1)/2e, every kappa class in

co-degree one overMg,n which is combinatorially trivial and is in the kernel
of κ̂1 is trivial (by the first part of the proof). The above equalities thus
imply that π∗(κ) = 0. Note that ψ1 = π∗(ψ1) + δ1,n+1 where δ1,n+1 denotes

the divisor which may be identified with Mg,n ×M0,3, and the markings 1
and n+ 1 are both placed on the genus zero component. We thus find

0 6=
∫

[Mg,n+1]
κψ1 =

∫

δ1,n+1

κ+

∫

[Mg,n+1]
κπ∗(ψ1) =

∫

[Mg,n]
π∗(κ)ψ1 = 0

This contradiction completes the proof.

Theorem 5.12 and its proof imply that

R3g+n−4(Mg,n)Sn = κ3g+n−4(Mg,n)

and that this vector space is spanned by κp with p ∈ P ∪B′.

6. The asymptotic behavior of the ranks

The behavior of the rank of κdc(Mg,n) for arbitrary values of g, n and d
seems to be more complicated. Table 2 illustrates the computations for genus
0, 1, 2 in co-degrees 2, 3, 4, 5 and 6 when the number n of the marked points
is less than or equal to 10. The second author has a computer program for
computing the relevant kappa integrals, as well as the rank of the matrix
R(d; g, n). Computations beyond these tables require large memory and are
relatively time consuming even over very fast computers.

We apply the strategy of the previous section, and study the asymptotic
behavior of the rank of κdc(Mg,n) instead, when the genus g and the co-
degree e = 3g − 3 + n − d are fixed. Since n grows large, we may use
Theorem 1. The number of elements in P (d, e + 1), as d grows large, is

asymptotic to
(
d+e
e

)
/(e+ 1)!. The number of rows in the matrix R(d; g, n),

i.e. the number of elements in Q(d; g, n), is thus asymptotic to either of

|P(d, e+ 1)|
(
g + e

e

)
and

(
n+e
e

)(
g+e
e

)

(e+ 1)!
.
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Table 2. The tables illustrate the rank of κ∗
(
Mg,n

)
in co-

degrees 2, 3, 4, 5 and 6 respectively.

Co-degree=2
XXXXXXXXXXXGenus

Points
1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 1 1 2 3 4 5
1 0 1 1 2 3 5 7 10 13 17
2 2 3 5 7 11 15 21 28 36 45

Co-degree=3
XXXXXXXXXXXGenus

Points
1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 1 1 2 3 5
1 0 0 1 1 2 3 5 7 11 15
2 1 2 3 5 7 11 15 22 30 42

Co-degree=4
XXXXXXXXXXXGenus

Points
1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 1 1 2 3
1 0 0 0 1 1 2 3 5 7 11
2 1 1 2 3 5 7 11 15 22 30

Co-degree=5
XXXXXXXXXXXGenus

Points
1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 1 1 2
1 0 0 0 0 1 1 2 3 5 7
2 0 1 1 2 3 5 7 11 15 22

Co-degree=6
XXXXXXXXXXXGenus

Points
1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 1 1
1 0 0 0 0 0 1 1 2 3 5
2 0 0 1 1 2 3 5 7 11 15
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Set h = g + 2. As n grows large, the asymptotic growth of P(d, e+ 1) is
the same as the growth of the number of partitions p = (a0 ≥ a1 ≥ ... ≥ ae)
satisfying

ae > 2eh, ai ≤ ai−1 − 2h for i = 1, ..., e− 1.

Denote the set of all such partitions by Ph(d; e+ 1).

For p = (a0 ≥ a1 ≥ . . . ≥ ae > 0) ∈ Ph(d; e + 1) let P (p) ⊂ P(d, 2e + 1)
denote the set of partitions

p′ = (a0 > a1− b1 > ..., ae− be > be > be−1 > . . . > b1), (i−1)h < bi ≤ ih.

For every p′ ∈ P (p) define f(p′) = p. This gives a function

f : P =
⋃

p∈Ph(d;e+1)

P (p) −→ Ph(d; e+ 1).

Equip Ph(d; e+1) with the lexicographic order, setting p = (a0 > ... > ae >
0) less than p = (a′0 > ... > a′e > 0) if there is some i ≥ 0 such that aj = a′j
for j = 0, ..., i− 1 and ai < a′i (while P is partially ordered with �).

Although f is not a fine assignment and the second condition in Defini-
tion 4.2 may fail, it differs from a fine assignment in a controllable way, as
will be discussed below. Let

p′ = (a0, a1 − b1, ..., ae − be, be, ..., b1)

and suppose that p′′ ∈ Ph(d; e + 1) refines p′ while p′′ < p = (a0, ..., ae).
Then

p′′ = (a0 ≥ a1 ≥ ... ≥ ai−1 ≥ ai − bi ≥ ci+1 ≥ ... ≥ ce > 0)

for some i > 0 and some positive integers ci+1, ..., ce. Associated with every
p,p′ and p′′ as above, and every q ∈ Q(p′′; g, n) we put 1

Λ(q)〈p′,q〉 in a

matrix Ei(d; g, n) as the entry corresponding to the row indexed by q and
the column indexed by p′. For i = 1, ..., e the rows of the matrix Ei(d; g, n)
are labelled by

Q =
⋃

p∈Ph(d;e)

Q(p; g, n),

while its columns are labelled by P .

The sub-matrix S(d; g, n) of R(d; g, n) determined by the columns corre-
sponding to P ⊂ P(d) and the rows corresponding to Q ⊂ Q(d; g, n) is thus
a sum

S(d; g, n) = T (d; g, n) +

e∑

i=1

Ei(d; g, n),
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where T (d; g, n) is an upper triangular matrix with respect to the total order
<. Lemma 4.3 implies that

rank(T (d; g, n)) ≥
∑

p∈P(d;e)

rf (p; g, n)

Proposition 6.1. There is a subset A ⊂ Ph(d; e+1) of size (eh)2

2 |P(d; e+1)|
such that for every p ∈ Ph(d; e+ 1) \A

rf (p; g, n) =

(
g + e

e

)
.

Proof. Consider the matrix S(p; g, n) (containing Rf (p; g, n) as a sub-
matrix) whose rows are in correspondence with all assignments (g0, g1, ..., ge)
to the (e+1) components of the combinatorial cycle, without any restriction
on their sum, i.e. we consider all tuples q = ((m0, g0), ..., (me, ge)) such that
ai = 3gi − 3 +mi and 0 ≤ gi ≤ g. The matrix Rf (p; g, n) is a sub-matrix of
S(p; g, n) while they both have the same number of columns. As a result, if
the row rank of S(p; g, n) is full, so is the row rank of R(p; g, n).

Let Mk(m; g) denote the sub-matrix of N(m; g) which consists of the
columns corresponding to the values j = k, k + 1, ..., k + g. The matrix
S(p; g, n) has at least the same rank as the matrix N1⊗N2⊗ ...⊗Ne, where
N1 = M(m; g) and for i > 1 Ni is the matrix Mih−h+1(ai + 2; g). The
determinant dkg(m) = Det(Mk(m; g)) is a polynomial with

deg
(
dkg(m)

)
≤ (g + 1)(2k + g)

2
by Lemma 5.6. Moreover, Proposition 5.8 implies that

dkg(k + g) = (−1)(
g
2)Det




n0(0, k + g) n1(0, k + g) . . . ng(0, k + g)
n0(1, k + g) n1(1, k + g) . . . ng(1, k + g)

...
...

. . .
...

n0(0, k + g) n1(0, k + g) . . . ng(0, k + g)


 .

Since the degree of ni(h,m) is i, the right-hand-side of the above equality is
a Van-der-Monde matrix, and the determinant is non-zero. The polynomial

dkg(m) is thus non-trivial and has at most (g+1)(2k+g)
2 roots. Let Akg denote

the set of integer roots of dkg(m). Thus, Ni is invertible unless ai+2 belongs

Aih−h+1
g , and

|Aih−h+1
g | = (g + 1)(2ih− 2h+ 2 + g)

2
≤ (i− 1

2
)h2.

The set of partitions (a0 > a1 > ... > ae) ∈ Ph(d; e + 1) such that ai ∈
Aih−h+1
g is at most of size

|Ph(d; e)||Aih−h+1
g | ≤ |P(d; e)|h2(i− 1

2
).
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Consequently, for p outside a set of size
e∑

i=2

(i− 1

2
)|P(d; e)|h2 =

(eh)2

2
|P(d; e)|

every Ni is a full-rank matrix and the rank of Rf (p; g, n) is equal to the

number of its rows, i.e.
(
g+e
e

)
.

Since |P(d; e)| is asymptotic to
(
n+e−1
e−1

)
/e!, Proposition 6.1 implies that

the rank of T (d; g, n) is asymptotic to

|Ph(d; e+ 1)|
(
g + e

e

)
'
(
n+e
e

)(
g+e
e

)

(e+ 1)!
.

In order to complete a computation of the asymptotic behavior of r(d; g, n)
it suffices to study the difference between the rank of T (d; g, n) and the rank
of S(d; g, n).

Proposition 6.2. With the above notation

lim
n→∞

rank(Ei(d; g, n))(
n+e
e

) = 0.

Proof. Define a function fi : Q ⊂ Q(d; g, n) → Q(d; g, n − 1) as follows.
Let q = {(gi,mi)}ei=0 ∈ Q be a multi-set with 3gi +mi > 3gj +mj if i < j.
Define

fi : Q ⊂ Q(d; g, n)→ Q(d; g, n− 1)

fi(q) :=
(

(g0 + gi,m0 +mi − 3), (g1,m1), ..., ̂(gi,mi), . . . , (ge,me)
)
,

where the hat over (gi,mi) means that it is omitted from the sequence. Let
Qi = fi(Q) ⊂ Q(d; g, n− 1). Suppose that

q =
{

(gi,mi)
}e+1

i=0
,q′ =

{
(g′i,m

′
i)
}e+1

i=0
, and fi(q) = fi(q

′).

Furthermore, let 3gj + mj ≥ 3gk + mk and 3g′j + m′j ≥ 3g′k + m′k if j < k.

For every p = (a0, a1 − b1, ..., ae − be, be, ..., b1) such that 〈p,q〉 is non-zero
in Ei(d; g, n),

p(q) = (a0 ≥ a1 ≥ ... ≥ ai−1 ≥ ai − bi ≥ ci+1 ≥ ... ≥ ce > 0),

for some integers ci+1, ..., ce. Let

p̂ = (ai+1 − bi+1, ..., ae − be, be, ..., bi) , q̂ = ((gi+1,mi+1), . . . (ge,me)) .

Then,

〈p,q〉 =
1

24g0+gi × g0!× gi!



i−1∏

j=1

∫

Mgj ,mj+2

ψ
bj+1
1 ψ

aj−bj+1
2


 〈p̂, q̂〉

= 〈p′,q〉.
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Thus, the rows in Ei(d; g, n) which correspond to q and q′ are identical.
Consequently, the rank of Ei(d; g, n) is bounded above by |Qi|, which is in
turn less than or equal to the cardinality of Q(d; g, n − 1). But the latter
cardinality is asymptotic to

(
g+e−1
e−1

)(
n+e
e−1

)

e!
.

The proposition follows immediately.

Theorem 6.3. The rank of the kappa ring κ∗c(Mg,n) in co-degree e, as the
number n of the marked points becomes large, is asymptotic to

(
n+e
e

)
.
(
g+e
e

)

(e+ 1)!

Proof. Proposition 6.1 implies that asymptotically, the rank is greater
than or equal to

|Ph(d; e+ 1)|
(
g + e

e

)
−

e∑

i=1

rank(Ei(d; g, n)).

By Proposition 6.2, the matrices Ei(d; g, n) do not change the asymptotic,
and r(3g − 3 + n− e; g, n) is asymptotically greater than or equal to

(
n+e
e

)
.
(
g+e
e

)

(e+ 1)!
.

Since the number of rows in R(d; g, n) follows the same asymptotic behavior
the proof is complete.
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