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Abstract

In this paper we consider optimal edge colored complete graphs. We show

that in any optimal edge coloring of the complete graph Kn, there is a Hamil-

ton cycle with at most
√

8n different colors. Also we prove that in every

proper edge coloring of the complete graph Kn, there is a rainbow cycle with

at least n/2−1 colors (A rainbow cycle is a cycle whose all edges have different

colors). We prove that for sufficiently large n, in any optimal edge coloring of

Kn, a random Hamilton cycle has approximately (1 − e−1)n different colors.

Finally it is proved that if using an abelian group G, we properly edge color

Kn, for odd n, then it has a rainbow Hamilton cycle.

Introduction

Graph colorings is one of the most important concepts in graph theory. In

the present paper we study the existence of a Hamilton cycle with many colors,

also the existence of a Hamilton cycle with few colors in any proper edge coloring
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of a complete graph. A rainbow cycle is a cycle whose all edges have different

colors. Given an optimally edge colored complete graph with n vertices, we study

the number of colors appearing on its cycles. We show that there exists a Hamilton

cycle with at most
√

8n colors and a Hamilton cycle with at least n(2/3 − o(1))

colors. A random Hamilton cycle is also shown to have n(1− 1/e + o(1)) colors on

average. There are examples of optimal edge colorings that have no Hamilton cycle

with less than log2 n colors. Furthermore, in some optimal edge colorings, there

is no Hamilton cycle with n − 1 or n colors. We conjecture that there is always

a Hamilton cycle with at most O(log n) colors and a Hamilton cycle with at least

n− 2 colors.

In [2] it is shown that for every ε > 0 and n > n0(ε), any complete graph Kn

whose edges are colored so that no vertex is incident with more than (1− 1√
2
− ε)n

edges of the same color, contains a Hamilton cycle in which adjacent edges have

distinct colors. Moreover, for every k, 3 ≤ k ≤ n, any such Kn contains a cycle of

length k in which adjacent edges have distinct colors. Let the edges of the complete

graph Kn be colored so that no color is used more than k = k(n) times. This

coloring it is called a k-bounded coloring. Clearly, if k = 1, every Hamilton cycle is

a rainbow cycle. Hahn and Thomason showed that for the existence of a rainbow

Hamilton cycle it is enough k grows as fast as 3
√

n and conjectured that the growth

rate of k could in fact be linear, see [4]. Frieze and Reed in [3] proved that there is an

absolute constant A such that if n is sufficiently large and k is at most dn/(A ln n)e,
then in any k-bounded coloring of Kn, there exists a rainbow Hamilton cycle. Also

in [1] It has been shown that , if n is sufficiently large and k is at most dcne, where

c < 1
64

, then in any k-bounded coloring of Kn, there exists a rainbow Hamilton cycle.

For any graph G, we denote the sets of the vertices and edges of G by V (G) and

E(G), respectively. A matching in G is a set of edges with no shared end points.

We denote the complete graph with n vertices by Kn. A Hamilton cycle of G is a

cycle that contains every vertex of G. A proper k-edge coloring of a graph G is an
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assignment of k colors to the edges of G such that no two adjacent edges have the

same color. The edge chromatic number χ′(G) of a graph G, is the minimum k for

which G has a k-edge coloring. A proper edge coloring of G with χ′(G) colors is

called an optimal edge coloring. For any uv ∈ E(G), we denote the color of uv by

c(uv). It is known that χ′(Kn) = n− 1 for even n and χ′(Kn) = n for odd n, see [7,

p.274].

Given an abelian group G of order n, one can identify vertices of Kn with elements

of G. We can then color Kn by setting c(vivj) = vi + vj for all vi, vj ∈ G where “+”

denotes the operation of the group. The coloring is well-defined since G is abelian,

and is proper since every element of G has an inverse. Moreover, it is optimal

for odd n. We call this coloring the edge coloring of Kn with respect to G. We

study the existence of rainbow cycles of different lengths in optimally edge colored

complete graphs. As an example, we show that if the coloring is with respect to the

abelian group Zp where p is an odd prime, then for any possible length, there exists

a rainbow cycle of that length. We also prove that every edge coloring with respect

to an abelian group of odd order has a rainbow cycle of length n − 1. Finally, it

is shown that there is always a rainbow cycle with length at least n/2 − 1. Note

that existence of long rainbow cylces implies existence of Hamilton cycles with many

colors.

Results

We start this section by showing that in any optimal edge colorings of the complete

graph, there exists a Hamilton cycles with few colors. We accomplish this goal by

carefully analyzing a gready algorithm that tries to construct a Hamilton cycle with

as few colors as possible.

Theorem 1. In any optimal edge coloring of the complete graph Kn, there is a
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Hamilton cycle with at most
√

8n different colors.

Proof. Our proof relies on the following observation: Let P1, . . . , Pk be k vertex-

disjoint paths that cover V (Kn). For 1 ≤ j ≤ k, let vj be an endpoint of Pj. There

are
(

k
2

)
edges connecting the vj’s, and χ′(Kn) ≤ n colors are used. We can thus find

a set S of at least k(k − 1)/(2n) edges, all of the same color and all connecting the

vj’s. Evidently, adding S to P1, . . . , Pk decreases the number of paths by at least

k(k − 1)/(2n) and increases the number of distinct colors that appear on the paths

by at most one. In addition, the paths are still vertex-disjoint and cover V (Kn).

To begin, let Pi be the path of length zero formed by the ith vertex of Kn

for 1 ≤ i ≤ n. Clearly, P1, . . . , Pn cover V (Kn) and are vertex-disjoint. Let us set

x0 = n. By the above observation and induction on i ≥ 0, there are xi vertex-disjoint

paths that use at most i colors and cover V (Kn), and xi+1 ≤ xi − xi(xi − 1)/(2n).

Clearly, the function 1/(x(x − 1)) is decreasing in the range x > 1. Hence if m

is a nonnegative integer and xm > 1, we have

m ≤
m−1∑
i=0

2n(xi − xi+1)

xi(xi − 1)
≤

∫ x0

xm

2n

x(x− 1)
dx ≤

∫ x0

xm

2n

(x− 1)2
dx =

2n

xm − 1
− 2n

n− 1
,

which implies that xm ≤ 1 + 2n/(m + 2) for all nonnegative integers m. Recall that

there are xm vertex-disjoint paths with at most m colors on the edges which cover

V (Kn). We can connect these paths to form a Hamilton cycle by adding xm edges;

the resulting Hamilton cycle has at most m + xm colors. For m = d
√

2ne − 2, we

have xm ≤
√

2n + 1. Thus at most (d
√

2ne − 2) + (
√

2n + 1) ≤ 2
√

2n colors appear

on the Hamilton cycle. �

Assume Kn is optimally edge colored. If n edges are randomly selected from E(Kn)

with replacement, then for every color c, the probability that none of the n edges

have color c is equal to (1− 1/χ′(Kn))n, or approximately equal to 1/e for large n.
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Therefore the number of distinct colors appearing on the n edges is approximately

(1 − 1/e)n. The following theorem shows that constraining the n random edges

to form a Hamilton cycle does not have a large impact on this average number of

distinct colors.

Theorem 2. Given an optimal edge coloring of the complete graph Kn, the expected

number of different colors that appear on the edges of a random Hamilton cycle of

Kn is approximately equal to (1− e−1)n, for large enough n.

Proof. Let c be an arbitrary color used in the given optimal edge coloring of Kn

and let C be the set of edges whose colors are c. The edges in C are a matching of

size bn/2c. Clearly Kn has (n− 1)!/2 Hamilton cycles.

Assume S is a subset of C with size k. We can count the number of Hamilton cycles

that contain S by considering the following transformation: For each edge in S,

contract its two endpoints into a single vertex. If H is a Hamilton cycle of Kn that

contains S, its transform is a Hamilton cycle of the graph Kn−k. Furthermore, every

Hamilton cycle of Kn−k is the transform of exactly 2k Hamilton cycles of Kn that

contain S, because the directions of the alignments of the edges of S in H have no

impact on the transform of H. Consequently, there are 2k−1(n − k − 1)! Hamilton

cycles in Kn that contain S. Thus the probability that a random Hamilton cycle

contains S is 2k(n− k − 1)!/(n− 1)!.

The principle of inclusion and exclusion now implies that the probability of the

event that a random Hamilton cycle avoids all edges in C is

p =

bn
2
c∑

k=0

(−1)kak, (1)

where, ak =

(
bn

2
c

k

)
2k(n− k − 1)!

(n− 1)!
=

1

k!

k−1∏
j=0

2(bn
2
c − j)

n− j − 1
.
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It is not hard to see that ak ≤ 1/k! for k ≥ 3. For any real number x, we have

1 + x ≤ ex; hence for k ≤ n1/3 we have

ak =
1

k!

k−1∏
j=0

(1 +
(n− j − 1)− 2(bn

2
c − j)

2(bn
2
c − j)

)−1

≥ 1

k!

k−1∏
j=0

(1 +
j

2(bn
2
c − k)

)−1 ≥ 1

k!

k−1∏
j=0

exp(− j

2(bn
2
c − k)

) =

1

k!
exp(− k(k − 1)

4(bn
2
c − k)

) ≥ 1

k!
exp(

n2/3

4bn
2
c − n1/3

) =
1

k!
(1 + o(1)),

where o(1) is a function in terms of n and k that becomes arbitrarily small as n gets

large. Splitting the right hand side of Equation 1 into two sums as in

p =

bn1/3c∑
k=0

(−1)kak +

bn
2
c∑

k=bn1/3c+1

(−1)kak,

we note that the Taylor expansion of ex for x = −1 yields

bn1/3c∑
k=0

(−1)kak =

bn1/3c∑
k=0

(−1)k

k!
(1 + o(1)) =

bn1/3c∑
k=0

(−1)k

k!
+

bn1/3c∑
k=0

(−1)k o(1)

k!

= (e−1 + o(1)) + o(1) = e−1 + o(1).

On the other hand, we have

|
bn

2
c∑

k=bn1/3c+1

(−1)kak | ≤
bn

2
c∑

k=bn1/3c+1

1

k!
= o(1),

since the series
∑∞

k=0
1
k!

is convergent. Thus we get p = e−1 + o(1). We know

n − 1 ≤ χ′(Kn) ≤ n, and the color c appears on a random Hamilton cycle with

probability 1−p. Thus we expect that χ′(Kn)(1−p) = n(1−e−1)(1+o(1)) different

colors appear on a random Hamilton cycle on average. �
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Theorem 3. In any optimal edge coloring of Kn, there is a Hamilton cycle with at

least n(2/3− o(1)) colors.

Proof. Suppose n is even. Without loss of generality assume {1, 2, · · · , n − 1} is

the set of colors used. Let A be an n × n square matrix where Aij = c(vivj) if

1 ≤ i, j ≤ n and i 6= j, and Aii = n if 1 ≤ i ≤ n. Clearly, A is a Latin square. By a

result in [6], we can select n−O(log2 n) entries of A that have different values, and

are located on distinct rows and columns. Of these entries, only one can be on the

diagonal. Furthermore, if Aij is selected then Aji can not be selected since values

appearing on the selected entries should be distinct. This means that we can select

n−O(log2 n)− 1 edges of Kn such that the selected edges have different colors, and

the degree of each vertex is at most two in the graph induced by these edges. That is,

the selected edges consist of vertex-disjoint paths and cycles. Every cycle has at least

3 edges. Thus we can delete one edge of every cycle to get (2/3)(n−O(log2 n)− 1)

edges forming vertex-disjoint paths. We can connect these paths to get a Hamilton

cycle with at least (2/3)(n−O(log2 n)− 1) = (2/3− o(1))n colors.

When n is odd, Kn is colored using n colors. Moreover, for any of these n colors,

exactly one vertex is not an endpoint of an edge of that color. Thus, we can extend

the optimal edge coloring of Kn to an optimal edge coloring of Kn+1. Since n + 1 is

even, Kn+1 has a Hamilton cycle with at least (2/3 − o(1))(n + 1) colors. We can

now trivially construct a Hamilton cycle for Kn that has (2/3− o(1))n colors. �

We examined, to some extent, the number of colors on Hamilton cycles. We will

now consider long, but not necessarily Hamilton, rainbow cycles.

Theorem 4. In any proper edge coloring of Kn (n ≥ 3), there is a rainbow cycle

with length at least n/2− 1.

Proof. Let C be the longest rainbow cycle, and assume C has length t < n/2− 1.

We say that an edge in Kn is good if its color does not appear in C. Let u and v be
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two adjacent vertices of C. Each of u and v is adjacent to at most t−3 vertices of C

by good edges, and each vertex is adjacent to at least (n− 1)− t good edges. Thus

each of u and v is adjacent to at least (n−1−t)−(t−3) ≥ 3 vertices of V (Kn)\V (C)

by good edges. Hence we can find two distinct vertices w, p ∈ V (Kn)\V (C) such

that uw and vp are good edges, and c(uw) 6= c(vp).

We can assume that wp is not a good edge, since otherwise uw, wp, and pw can

replace uv in C to form a rainbow cycle of length t+2, a contradiction. If two good

edges connect w to two adjacent vertices x, y ∈ V (C), one can obtain a rainbow

cycle of length t + 1 by using xw and wy instead of xy, another contradiction. It

follows that the number of good edges joining w to the vertices of C is at most t/2.

Similarly, there are at most t/2 good edges joining p to the vertices of C.

Using the fact that wp is not a good edge, there are at least 2((n−t−1)−t/2−1)

good edges that connect {w, p} to V (Kn)\(V (C)∪{w, p}) and have colors different

from c(wu) and c(vp). Since 2((n − t − 1) − t/2 − 1) > n − (t + 2), there is a

vertex q ∈ V (Kn)\(V (C) ∪ {w, p}) such that wq and pq are good, c(wq) 6= c(vp),

and c(uw) 6= c(pq). Replacing uv by uw, wq, qp, and pq, we obtain a rainbow cycle

longer than C. It implies that t ≥ n/2− 1. �

We will now prove, in a series of theorems, several results on the existence of rainbow

cycles of different lengths in colorings obtained from finite abelian groups.

Theorem 5. Let p be a prime number and n = pm (n 6= 3). Consider the edge

coloring of Kn with respect to Zm
p = Zp × · · · × Zp. Then Kn has a rainbow cycle

with length n− 1.

Proof. Let F be a finite field of order pm. Assume that α is a generator for

cyclic group F ∗ = F\{0}. First note that the additive group of F is isomorphic

to Zm
p . We prove that 1, α, . . . , αpm−1 is a rainbow Hamilton cycle. To prove this
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assume that i 6= j and αi + αi+1 = αj + αj+1. From this equality we conclude that

αi(α + 1) = αj(α + 1). Therefore αi = αj and it follows that i = j, which is a

contradiction. �

Theorem 6. If p is an odd prime number and Kp is edge colored with respect to

Zp, then for any r, 3 ≤ r ≤ p, there is a rainbow cycle of length r.

Proof. Consider the edge coloring for Kp, with respect to Zp. First assume that

r is odd and 3 ≤ r ≤ p. Consider the cycle formed by the labels 1, . . . , r. Since for

any i, j, 1 ≤ i, j ≤ r − 1, i 6= j, we have 2i + 1 6= r + 1, 2i + 1 6= 2j + 1, and this

implies that this cycle is a rainbow cycle of length r. Next suppose that r is even and

3 < r < p. If r = p−1, then by Theorem 5, we have a rainbow cycle of length p−1.

If r ≤ p−1
2

, consider the cycle formed by the labels 1, 2, . . . , r−1, r+1. Since for any

i, 1 ≤ i ≤ r− 2, we have 2i + 1 6= 2r, 2i + 1 6= r + 2, 2r 6= r + 2, and 2i + 1 6= 2j + 1

for any i 6= j, the given cycle is rainbow of length r. If p+1
2

≤ r < p−1, consider the

cycle labeled by the numbers 1, 2, . . . , p−1
2

, p+3
2

, . . . , r + 1. Since for any i, 1 ≤ i ≤ r,

i 6= p−1
2

, p+1
2

, 2i + 1 6= r + 2, 2i + 1 6= p + 1, r + 2 6= p + 1 and 2i + 1 6= 2j + 1, for

any i 6= j, so the given cycle is rainbow of length r. �

Theorem 7. Let p be an odd prime number and n = pm. Consider the edge coloring

of Kn with respect to Zm
p = Zp × · · · × Zp. Then the following hold:

(i) Kn has a rainbow Hamilton cycle.

(ii) If l |n − 1 and l > 2, then the vertices Kn\{(0, . . . , 0)} can be covered by n−1
l

rainbow cycle.

Proof. (i) We apply induction on m. By Theorem 6 the assertion is true for m = 1.

Now suppose that the assertion is true for Zm−1
p , we show that the assertion is also

true for Zm
p . Assume that l = pm−1 and α1, . . . , αl are those elements of Zl

p such that
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αi + αi+1 6= αj + αj+1, for any i, j, 1 ≤ i, j ≤ l, i 6= j. We claim that the following

Hamilton cycle is a rainbow Hamilton cycle.

(α1, 0), . . . , (αl, 0), (α1, 1), . . . , (αl, 1), . . . , (α1, p− 1), . . . , (αl, p− 1)

we note that if r 6= s or i 6= j, then (αi + αi+1, 2r) 6= (αj + αj+1, 2s). Assume that

(αl, t) + (α1, t + 1) = (αi, q) + (αi+1, q) = (αi + αi+1, 2t + 1) or (αl, t) + (α1, t + 1) =

(αl, s) + (α1, s + 1). In the second case s = t and there is nothing to prove. In the

first case i = l, a contradiction.

(ii) Since l |n − 1, there is a cyclic subgroup H of F ∗, such that |H| = l. Assume

that H is generated by β. If Hαt is a right coset of H in F ∗, then the elements of

αt, βαt, . . . , βl−1αt forms a rainbow cycle of length l, because if

βiαt + βi+1αt = βjαt + βj+1αt,

then we find βi(β + 1) = βj(β + 1), that is i = j. �

Theorem 8. If G is an abelian group of order n and n is odd, then the edge coloring

of Kn with respect to G has a rainbow Hamilton cycle.

Proof. By cyclic decomposition of finite abelian groups, we have G ' Zp
m1
1

×
· · · × Zp

mk
k

, where pi’s are prime numbers (not necessarily distinct), see [5, p.109].

If k = 1, the assertion follows from Theorem 7. Otherwise by elementary group

theory, there is an abelian group H of odd order such that G = H × Zpm . Now if

a1, . . . , ah (h = |H|) is a rainbow Hamilton cycle in Kh which has been colored with

respect to H, then as we saw in the proof of Theorem 7 Part (i),

(a1, 0), . . . , (ah, 0), . . . , (a1, p
m − 1), . . . , (ah, p

m − 1)

is a rainbow Hamilton cycle in Kn.

�
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We continue by a conjecture on the existence of Hamilton cycles with few different

colors in any optimal edge coloring of Kn.

Conjecture 1. There is a positive constant c such that in any optimal edge coloring

of Kn, there exists a Hamilton cycle with at most c log2 n different colors.

The following shows that if the above conjecture is correct, then c ≥ 1.

Lemma 1. If n = 2m (m ≥ 2) and Kn is edge colored with respect to Zm
2 , then the

edge coloring has no rainbow Hamilton path. Moreover there are no rainbow cycles

of length n, n− 2 and n− 3, but there is a rainbow cycle of length n− 1. Also every

Hamilton cycle has at least m different colors.

Proof. First note that the color of no edge is 0. Let v1, . . . , vn be a rainbow

Hamilton path. If we add all colors appeared on the edges of this Hamitonian path,

we obtain the number 1+2+· · ·+(2m−1). On the other hand, for any i, the number

of elements of Z2m in which the i-th components are 1 is even, so this number should

be zero. Furthermore since c(vivj) = vi+vj, we conclude that v1+vn+2
∑n−1

i=2 vi = 0

and it yields that v1 = vn, a contradiction. Also since the number of colors appeared

in the edges is n− 1, there is no a rainbow Hamilton cycle.

Now let v1, v2, . . . , vn−2 be a rainbow cycle of length n− 2. Suppose that just color

0 6= a is not appeared on its edges. If we add all colors appeared on the edges of

this cycle, we find 2
∑n−2

i=1 vi = a and this implies that a = 0, which is impossible.

Next assume that v1, v2, . . . , vn−3, is a rainbow cycle of length n − 3. Let a and b

be the only colors which are not appeared on the edges of this cycle. If we add all

colors appeared on the edges of this cycle, we find 2
∑n−3

i=1 vi = a+b and this implies

that a = b, a contradiction.

By Theorem 5, Kn with the given edge coloring has a rainbow cycle of length n− 1.

We claim that every Hamilton cycle in this edge coloring of Kn has at least m
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different colors. Using the fact that for any two consecutive vertices vi and vj of this

Hamilton cycle c(vivj) = vi +vj, and vi +(vi +vj) = vj, if W is the vector space over

Z2 generated by all colors appeared on the edges of a Hamilton cycle, then we have

dim W ≤ m− 1. It follows that |W | ≤ 2m−1, but {v1, v2, . . . , vn} ⊆ v1 + W and this

contradicts n = 2m. Hence every Hamilton cycle has at least m different colors. �

Conjecture 2. In any optimal edge coloring of Kn, there is a Hamilton cycle with

at least n− 2 different colors.

By a reformulation of the above conjecture we may say that in any optimal edge

coloring of Kn, there is a Hamilton path with at least n− 2 different colors.

We now go on to following questions.

Question 1. Is it true that in any optimal edge coloring of Kn, there is a rainbow

cycle of size at least n− 2?

Question 2. Is it true that in any optimal edge coloring of Kn, there is a rainbow

path of size at least n− 2?

Besides being interesting in its own right, the truth of these questions would support

Conjecture 2.

In closing the paper we want to discuss some special cases in the above questions.

We note that there is an optimal edge coloring for K8 which has a rainbow path

of length 6 but no rainbow path of length 7. To see this consider the following
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symmetric matrix A = [aij],

∗ 1 2 3 4 5 6 7

1 ∗ 3 2 5 4 7 6

2 3 ∗ 1 6 7 4 5

3 2 1 ∗ 7 6 5 4

4 5 6 7 ∗ 1 2 3

5 4 7 6 1 ∗ 3 2

6 7 4 5 2 3 ∗ 1

7 6 5 4 3 2 1 ∗

If V (K8) = {v1, . . . , v8} and set c(vivj) = aij, for any i, j, 1 ≤ i, j ≤ 8, i 6= j, we

obtain an optimal edge coloring as desired. Indeed the path v1, v8, v7, v6, v2, v5, v3

is a rainbow path with length 6. Similarly by considering the matrix B = [bij] as

follows,

∗ 1 2 3 4 5 6 7

1 ∗ 3 2 7 6 5 4

2 3 ∗ 1 5 4 7 6

3 2 1 ∗ 6 7 4 5

4 7 5 6 ∗ 1 2 3

5 6 4 7 1 ∗ 3 2

6 5 7 4 2 3 ∗ 1

7 4 6 5 3 2 1 ∗

we obtain an optimal edge coloring for K8 with no rainbow cycle of length 7 which

contains a rainbow cycle with length 6. Indeed the cycle v1, v8, v7, v2, v6, v3 is a

rainbow cycle of length 6.

The above results were obtained by a computer program written by Ali Sharifi.
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