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Abstract

We study the weak Ks-saturation number of the Erdős–Rényi random graph G(n, p),
denoted by wsat(G(n, p),Ks), where Ks is the complete graph on s vertices. In 2017, Korándi
and Sudakov proved that the weak Ks-saturation number of Kn is stable, in the sense that
it remains the same after removing edges with constant probability. In this paper, we prove
that there exists a threshold for this stability property and give upper and lower bounds on
the threshold. This generalizes the result of Korándi and Sudakov. A general upper bound on
wsat(G(n, p),Ks) is also provided.
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1. Introduction

Given a graph F , an F -bootstrap percolation process is a sequence of graphs H0 ⊂ H1 ⊂ · · · ⊂ Hm

such that, for i = 1, . . . ,m, Hi is obtained from Hi−1 by adding an edge e that belongs to a copy
of F in Hi. As a customary term, it is said that the edge e is activated during the process. The F -
bootstrap percolation process was introduced by Bollobás more than fifty years ago [6] and can be
seen as a special case of the ‘cellular automata’ introduced by von Neumann [15]. The F -bootstrap
percolation is also similar to r-neighborhood bootstrap percolation model having applications in
physics; see, for example, [1], [8], and [14].

Given two graphs G and F , a spanning subgraph H of G is said to be a weakly F -saturated sub-
graph of G if H contains no subgraph isomorphic to F and there exists an F -bootstrap percolation
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process H = H0 ⊂ H1 ⊂ · · · ⊂ Hm = G. The minimum number of edges in a weakly F -saturated
subgraph of G is called the weak F -saturation number of G and is denoted by wsat(G,F ).

We denote by G(n, p) the Erdős–Rényi random graph on vertex set [[n]] = {1, . . . , n} con-
structed by adding every edge e ∈ {xy |x, y ∈ [[n]] and x 6= y} with probability p independently
of all the others. Korándi and Sudakov [12] initiated the study of weak saturation numbers of
random graphs. They proved that, for every fixed real number p ∈ (0, 1) and integer s > 3,
wsat(G(n, p),Ks) = wsat(Kn,Ks) with high probability. Recall that the notion ‘with high prob-
ability’, which is written as ‘whp’ for brevity, is used whenever an event occurs in G(n, p) with a
probability approaching 1 as n→∞. It was already known that

wsat(Kn,Ks) = (s− 2)n−
�
s− 1

2

�
by a classic result proved by Lovász [13]. Several proofs for the above equality have been given
by others. Korándi and Sudakov [12] also noticed that wsat(G(n, p),Ks) = wsat(Kn,Ks) whp
when p > n−ε for small enough ε > 0 and asked about smaller p and about possible threshold for
the property of having the weak Ks-saturation number of G(n, p) exactly (s − 2)n −

�
s−1
2

�
. We

denote this property by As. In this paper, we prove that this threshold exists and present upper
and lower bounds on that. Recall that a function

b
p is a threshold for a sequence Xn of events in

G(n, p) if either

lim
n→∞

P
�
Xn

�
=

8<: 0 if p�
b
p,

1 if p�
b
p

or

lim
n→∞

P
�
Xn

�
=

8<: 1 if p�
b
p,

0 if p�
b
p.

The existence of a threshold for the property As and its lower bound are proven in Section 3. It
is done by approximating this property using an auxiliary increasing property. We also establish an
upper bound on the aforementioned threshold in Section 4 by introducing a weakly Ks-saturated
subgraph of G(n, p). The following theorem summarizes our results in Sections 3 and 4. Before
stating it, we fix some notation. For any integer s > 3, let

as =
�

2
�

1− 1

s+ 1

�
(s− 2)!

� 2
(s−2)(s+1)

(1)

and

σs =

(
2 if s = 3,

1 if s > 4.
(2)

Theorem 1.1. For any fixed integer s > 3, the property As in G(n, p) has a threshold. Moreover,
there is a threshold ep for the property As in G(n, p) with asn

−2/(s+1)(log n)2/(s−2)(s+1) 6 ep 6
n−1/(2s−3)(log n)(s+σs−3)/(2s−3) for all sufficiently large n.

Furthermore, we establish in Section 5 a universal upper bound on wsat(G(n, p),Ks) which is
presented in the following theorem. It can be remarkable when p is between the provided upper
and lower bounds on the threshold in Theorem 1.1.
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Theorem 1.2. Let s > 3 be a fixed integer and let w(n) be a real-valued function such that
w(n)→∞ as n→∞. Then, whp

wsat
�
G(n, p),Ks

�
6 (s− 2)n+

(log n)2(s+σs−3)w(n)

p2s−3
.

For the sake of clarity, we present in Section 2 the notation and terminology used in the paper
and state the known results that we have referred to.

2. Notation and preliminaries

In this section, we introduce notation and recall the probabilistic facts that we use in the rest of
the paper.

For a graph G, we denote the vertex set and the edge set of G by V (G) and E(G), respectively.
The size of G is defined as |E(G)| and is denoted by e(G). For a vertex u of G, let NG(u) =
{x ∈ V (G) |u is adjacent to x}, that is, the set of neighbors of u in G. For a subset U of V (G),
set NG(U) =

T
u∈U NG(u) and NG[U ] = U ∪NG(U). For the sake of convenience, NG(u1, . . . , uk)

is written instead of NG({u1, . . . , uk}). Further, for a subset U of V (G), we denote the induced
subgraph of G on U by G[U ].

We also use the standard asymptotic notation in the rest of the paper. For two real-valued
functions f(n) and g(n), we write f(n) = O(g(n)) if there exists a constant c > 0 such that
|f(n)| 6 cg(n) for every large enough integer n. Also, we use the notation f(n) = o(g(n)) if the
same holds for any constant c > 0. We sometimes write f(n) � g(n) or g(n) � f(n) instead
of f(n) = o(g(n)). Finally, we use the notation f(n) = Θ(g(n)) if both f(n) = O(g(n)) and
g(n) = O(f(n)) hold.

In what follows, we formulate the probabilistic inequalities that we make use of all in the next
sections. We also recall some properties of random graphs.

Theorem 2.1 (Markov’s inequality; Inequality (1.3) in [10]). Let X be a nonnegative random
variable. Then, for all t > 0,

P
�
X > t

�
6
E[X]

t
.

Corollary 2.2. Let X1, X2, . . . be a sequence of nonnegative integer-valued random variables. If
E[Xn] = o(1), then Xn = 0 whp.

Theorem 2.3 (Chebyshev’s inequality; Inequality (1.2) in [10]). Let X be a random variable with
the expected value E[X] and the variance Var[X]. Then, for all t > 0,

P

h��X −E[X]
�� > ti 6 Var[X]

t2
.

Corollary 2.4. Let X1, X2, . . . be a sequence of random variables with nonzero expected values. If
Var[Xn] = o(E[Xn]2), then Xn 6= 0 whp.

Theorem 2.5 (Chernoff’s inequality; Theorem 2.1 in [10]). Let X ∼ Bin(n, p) be a binomial
random variable with parameters n and p. Then, for any t > 0,

P

�
X 6 np− t

�
6 exp

�
− t2

2np

�
.
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The following consequence of the Fortuin–Kasteleyn–Ginibre inequality appears in Page 31 of
[10].

Theorem 2.6 ([9]). Let S be a family of subgraphs of Kn and assume that the random variable
X counts the number of graphs in S that appear in G(n, p). Then,

P

�
X = 0

�
>
Y
H∈S

�
1−P

h
H ⊂ G(n, p)

i�
.

Theorem 2.7 (Janson’s inequality; Theorem 2.18 in [10]). Let S be a family of subgraphs of Kn.
Assume that the random variable X counts the number of graphs in S that appear in G(n, p). For
every H1, H2 ∈ S, let H1 ∼ H2 indicate that H1 6= H2 and H1, H2 share at least one edge. Define

∆X =
X

H1,H2∈S
H1∼H2

P

h
H1, H2 ⊂ G(n, p)

i
.

Then,

P

�
X = 0

�
6 exp

�
−E[X] +

∆X

2

�
.

A graph property P is called increasing if adding an edge to a graph satisfying P does
not destroy the property. A graph property P is called decreasing if removing an edge from a
graph satisfying P does not destroy the property. A graph property which is either increasing or
decreasing is called monotone. The assertions of the following theorem are also proved in Theorems
1.10 and 1.24 in [10].

Theorem 2.8 ([5, 7]). For every p1 6 p2, the following two statements hold.

(i) If P is an increasing graph property, then P[G(n, p1) ∈P] 6 P[G(n, p2) ∈P].

(ii) If P is a decreasing graph property, then P[G(n, p1) ∈P] > P[G(n, p2) ∈P].

Moreover, every monotone graph property has a threshold.

For a graph G, let d(G) = |E(G)|
|V (G)| and let m(G) = max{d(H) |H is a subgraph of G}. A graph

G is called strictly balanced if d(H) < d(G) for every proper subgraph H of G. The following
theorem also appears in [10] as Theorem 3.4.

Theorem 2.9 ([3]). Let G be a fixed graph with at least one edge. Then, n−1/m(G) is a threshold
for the property that G(n, p) contains a copy of G as a subgraph.

The following theorem also appears in [10] as Theorem 3.19.

Theorem 2.10 ([4]). Let G be a fixed strictly balanced graph. Assume that the random variable
X counts the number of copies of G that can be found in G(n, p), where npm(G) → c as n → ∞
for a positive constant c. Then, X converges weakly to a Poisson random variable with expectation
c|V (G)|/|Aut(G)| as n→∞, where Aut(G) denotes the automorphism group of G.

The following result is a part of Theorem 1 of [2].

Theorem 2.11 ([2]). Let s > 3 be a fixed integer and let p� n−2(s−2)/(s
2−s−4) log n. Then, there

exists an F -bootstrap percolation process G(n, p) = H0 ⊂ H1 ⊂ · · · ⊂ Hm = Kn whp.
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3. The existence of the threshold

In this section, we prove the existence of the threshold for the property As and present a lower
bound on it. We first prove the following lemma.

Lemma 3.1. Let s > 3 be a fixed integer. If p� n−2/(s+1), then the property As does not hold in
G(n, p) whp.

Proof. First, assume that p 6 1/(n log n). Since p � n−2/(s−1), we obtain from Theorem 2.9
that G(n, p) does not contain Ks as a subgraph. This forces that wsat(G(n, p),Ks) = e(G(n, p))
whp. Furthermore, it follows from Theorem 2.1 that e(G(n, p)) 6 n/

√
log n whp. This implies

that wsat(G(n, p),Ks) 6= wsat(Kn,Ks) whp, as desired. Next, assume that p > 1/(n log n). Let
ε ∈ (0, 1) be a small constant and denote byXs the random variable that counts the number ofKs in
G(n, p). As p� n−2/(s+1), we may consider a function f � 1 such that (np(s+1)/2)s−2f(n) = o(1).
It follows from E[Xs] =

�
n
s

�
ps(s−1)/2 and Theorem 2.1 that

P

�
Xs >

n2p

f(n)

�
6
E[Xs]
n2p
f(n)

6
nsp

s(s−1)
2 f(n)

n2p
=
�
np

s+1
2

�s−2
f(n) = o(1),

implying that Xs = o(n2p) whp. Since e(G(n, p))−Xs 6 wsat(G(n, p),Ks) 6 e(G(n, p)), we get
that whp

wsat
�
G(n, p),Ks

�
= e

�
G(n, p)

�
+ o

�
n2p

�
. (3)

Since p > 1/(n log n) and e(G(n, p)) follows the binomial distribution with parameters
�
n
2

�
and

p, we obtain from Theorem 2.3 that n2p/(2 + 2ε) 6 e(G(n, p)) 6 n2p/(2 − 2ε) whp. Thus, we
deduce from (3) that wsat(G(n, p),Ks) 6= wsat(Kn,Ks) whp when p � n−2/(s+1) and p /∈ Is for
all sufficiently large n, where

Is =

�
2(1− ε)(s− 2)

n
,
2(1 + ε)(s− 2)

n

�
.

If s > 4 and p ∈ Is, then Theorem 2.9 along with m(Ks) = (s− 1)/2 yields that Xs = 0 whp.
Hence, the weak saturation number is exactly e(G(n, p)) that is not concentrated on a single value.

If s = 3 and p ∈ I3 for all sufficiently large n, then wsat(G(n, p),K3) = e(G(n, p))−X3 whp.
This is because all the triangles in G(n, p) are disjoint whp, since there are no subgraphs with at
most 5 vertices and at least two cycles whp using Theorem 2.9. Note that the random variable
e(G(n, p))−X3 is also not concentrated in a unit set. This is because the number of edges has the
binomial distribution with parameters

�
n
2

�
and p = Θ(1/n), so it is outside any interval of length

o(
√
n) whp, while the number of triangles is bounded from above by an asymptotically Poisson

random variable. Indeed, for a constant nonnegative integer L, the property of having at most L
triangles is decreasing, implying that P[X3 6 L] is minimum when p = 2(1 + ε)/n by Theorem
2.8. At the same time, the number of triangles in G(n, 2(1 + ε)/n) converges in distribution
to a Poisson random variable with parameter 4

3(1 + ε)3 by Theorem 2.10. Thus, for any slowly
increasing function g � 1, we have X3 6 g(n) whp. With a suitable choice of g(n) = o(

√
n), we

may assume that |e(G(n, p))− wsat(Kn,K3)| > 2g(n) whp. Therefore, whp���wsat
�
G(n, p),K3

�
− wsat(Kn,K3)

��� =
����e�G(n, p)

�
−X3

�
− wsat(Kn,K3)

���
5



>
���e�G(n, p)

�
− wsat(Kn,K3)

���−X3

> g(n)

which implies that wsat(G(n, p),K3) 6= wsat(Kn,K3) whp.

For any integer s > 3, let

qs(n) = n−
2
s+1 (log n)

2
(s−2)(s+1)

and denote by Bs the property that any edge of G(n, p) belongs to some Ks. In order to proceed,
we state the following technical lemma about the property Bs. We include the proof of Lemma
3.2 in Appendix A.

Lemma 3.2. For any fixed integer s > 3 and any fixed positive number ε 6 1 − 2−2/(s
2−s−4), let

w(n) be a real-valued function such that

h(n) = 1 +
2 log log n

s(s− 2)2(s+ 1) log n
+
w(n)

log n
> n−ε

and p(n) = asqs(n)h(n) 6 1 for all sufficiently large n, where as is defined in (1). Then, the
following two statements hold.

(i) If w(n)→∞ as n→∞, then G(n, p) satisfies the property Bs whp.

(ii) If w(n)→ −∞ as n→∞, then G(n, p) does not have the property Bs whp.

For any integer s > 3, define the event Cs in G(n, p) as follows. Let C3 be the event that
for every two distinct vertices u and v there exists a path u, u′, v′, v of length 3 in G(n, p). For
s > 4, let Cs be the event that for every two distinct vertices u and v there exist two distinct
nonadjacent vertices u′, v′ ∈ NG(n,p)(u, v) as well as two disjoint cliques Ω ⊆ NG(n,p)(u, v, u

′, v′)
and Ω′ ⊆ NG(n,p)(u

′, v′) of sizes s− 4 and s− 2, respectively. The following result is a special case
of Theorem 2 of [18].

Lemma 3.3. Let s > 3 be a positive fixed integer. Then, there exists a constant cs such that for
any

p > csn
− 2(s−2)

s2−s−3 (log n)
1

s2−s−3 ,

the property Cs holds in G(n, p) whp.

We are now ready to prove the lower bound on the threshold for the property As.

Theorem 3.4. For any fixed integer s > 3 and any p 6 asqs, the property As does not hold in
G(n, p) whp.

Proof. In view of Lemma 3.1, we may assume that p > csn−2(s−2)/(s
2−s−3)(log n)1/(s

2−s−3), where
cs comes from Lemma 3.3. As p 6 asqs, Part (ii) of Lemma 3.2 implies that there exists an edge
e in G(n, p) that is not contained in any Ks whp which immediately yields that e should belong
to all weakly Ks-saturated subgraphs of G(n, p). Suppose by way of contradiction that there
exists a weakly Ks-saturated subgraph H of G(n, p) of size (s − 2)n −

�
s−1
2

�
. Then, H − e is a

weakly Ks-saturated subgraph of G(n, p) − e of size (s − 2)n −
�
s−1
2

�
− 1. But, this contradicts

wsat(Kn,Ks) = (s− 2)n−
�
s−1
2

�
, since G(n, p)− e is a weakly Ks-saturated subgraph of Kn whp.

To see this, note that the edge e can be activated by going through two steps whp by Lemma 3.3
and moreover G(n, p) is a weakly Ks-saturated subgraph of Kn whp by Theorem 2.11.
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For every positive integers r and s, we say a graph Γ has the property Dr,s if for any subset
X ⊆ V (Γ ) of size r, NΓ (X) contains a clique of size s. The following result is a special case of
Theorem 2 of [18].

Lemma 3.5. Let r and s be positive fixed integers. Then, there exists a constant dr,s such that
for any

p > dr,sn
− 2

2r+s−1 (log n)
2

s(2r+s−1) ,

the property Dr,s holds in G(n, p) whp.

Note that the lower bound given in Lemma 3.5 for the property D2,s−2 is equal to qs(n) up to
a constant. We will make use the following lemma twice in the next theorem.

Lemma 3.6. Let s > 3 be a fixed integer and let p = asqs(1 +w(n)) for some function w = O(1).
For given vertices u and v of G(n, p), let the random variable X count the number of cliques of
size s− 2 in NG(n,p)(u, v). Then,

E[X] =
2s

s+ 1
log n+ s(s− 2)w(n) log n+O

�
log n

�
w(n)2 +

1

n

��
and ∆X = E[X]o(n−1/(s+1) log n), where ∆X is introduced in Theorem 2.7.

Proof. For the sake of simplification, let λ = E[X] and ∆ = ∆X . We have

λ =

�
n− 2

s− 2

�
p

(s−2)(s+1)
2

=
ns−2

(s− 2)!

�
1 +O

�
1

n

��
2s

s+ 1
(s− 2)!n−(s−2) log n

�
1 + w(n)

� (s−2)(s+1)
2

=
2s

s+ 1
log n

�
1 +

(s− 2)(s+ 1)

2
w(n) +O

�
w(n)2

��
+O

�
log n

n

�
=

2s

s+ 1
log n+ s(s− 2)w(n) log n+O

�
log n

�
w(n)2 +

1

n

��
,

as desired. If s = 3, then ∆ = 0, there is nothing to prove. For s > 4, we have

∆ =
s−3X̀
=1

�
n− 2

s− 2

��
s− 2

`

��
n− s

s− 2− `

�
p(s−2)(s+1)− `(`+3)

2

= λ
s−3X̀
=1

�
s− 2

`

��
n− s

s− 2− `

�
p

(s−2)(s+1)−`(`+3)
2

= λ
s−3X̀
=1

(s− 2)!

`!(s− `− 2)!2
ns−`−2

�
1 +O

�
1

n

��
(asqs)

(s−2)(s+1)−`(`+3)
2

�
1 +O

�
w(n)

��
= λ

s−3X̀
=1

n−
`(s−`−2)
s+1 o (log n)

= λo
�
n−

1
s+1 log n

�
,

as required.

Theorem 3.7. For any fixed integer s > 3, there is a threshold for the property As in G(n, p).
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Proof. Clearly, the property As∩D2,s−2 is increasing and so it has a threshold rs by Theorem 2.8.
We prove that rs is a threshold for the property As.

If p � rs, then the definition of rs shows that G(n, p) has the property As whp. It remains
to prove the opposite for p� rs. For the sake of convenience, we let p′ = asqs and p′′ = d2,s−2qs.
Also, consider an auxiliary function

q(n) = p′(n)

�
1 +

1√
log n log log n

�
.

For given vertices u and v, denote by Xs the random variable that counts the number of cliques
of size s− 2 in NG(n,p)(u, v). From Theorem 2.7, we have

P

�
Xs = 0

�
6 exp

�
−E

�
Xs

�
+
∆Xs

2

�
. (4)

We distinguish the following four cases.

Case 3.8. Assume that the set N1 consisting of all positive integers n with p(n) 6 p′(n) is infinite.

Proof. It follows from Theorem 3.4 that P[G(n, p) ∈ As]→ 0 when n runs over N1. �

Case 3.9. Assume that the set N2 consisting of all positive integers n with p(n) > p′′(n) is infinite.

Proof. It follows from p� rs and Lemma 3.5 that

P

h
G(n, p) ∈ As

i
6 P

h
G(n, p) ∈ As ∩D2,s−2

i
+P

h
G(n, p) /∈ D2,s−2

i
−→ 0

when n runs over N2. �

Case 3.10. Assume that the set N3 consisting of all positive integers n with q(n) 6 p(n) < p′′(n)
is infinite.

Proof. In the following argument, we assume that n comes from N3. As p < p′′, by the coupling
technique, G(n, p′′) can be obtained by superimposing G(n, p) and G(n, (p′′ − p)/(1 − p)) and
replacing eventual double edges by a single one. Formally, it is written as G(n, p′′) = G(n, p) ∪
G(n, (p′′−p)/(1−p)). Denote by Es the property that there exists an edge xy in G(n, p′′)\G(n, p)
such that NG(n,p)(x, y) does not contain a clique of size s− 2. Using Lemma 3.6, E[Xs] > E[Ys] =
2s
s+1 log n+ s(s− 2)

√
log n/ log log n+ o(1) and ∆Xs = o(1), where the random variable Ys counts

the number of cliques of size s−2 in NG(n,q)(u, v) for given vertices u and v. By (4) and the union
bound, we get

P

h
Es
i
6

�
n

2

�
p′′ − p
1− p

exp

�
−E

�
Xs

�
+
∆Xs

2

�
6 n2

�
p′′ − p′

�
exp

�
− 2s

s+ 1
log n− s(s− 2)

√
log n

log log n
+ o(1)

�
= n2O

�
qs
�

exp

�
− 2s

s+ 1
log n− s(s− 2)

√
log n

log logn
+ o(1)

�
= O

�
(log n)

2
(s−2)(s+1)

�
exp

�
−s(s− 2)

√
log n

log log n

��
1 + o(1)

�
8



= o(1).

Since p � rs and p′, p′′ differ by a constant factor, we find that p′′ � rs. So, it follows from
Lemma 3.5 that

P

h
G(n, p′′) ∈ As

i
6 P

h
G(n, p′′) ∈ As ∩D2,s−2

i
+P

h
G(n, p′′) /∈ D2,s−2

i
−→ 0

when n runs over N3. Hence, P[G(n, p) ∈ As] 6 P[G(n, p′′) ∈ As] +P[Es]→ 0 when n runs over
N3. �

Case 3.11. Assume that the set N4 consisting of all positive integers n with p′(n) < p(n) < q(n)
is infinite.

Proof. In the following argument, we assume that n comes from N4. As p < q, by the coupling
technique,G(n, q) can be obtained by superimposingG(n, p) andG(n, (q−p)/(1−p)) and replacing
eventual double edges by a single one. Formally, it is written asG(n, q) = G(n, p)∪G(n, (q−p)/(1−
p)). Let Es be the property that there exists an edge xy in G(n, q)\G(n, p) such that NG(n,p)(x, y)

does not contain a clique of size s − 2. Using Lemma 3.6, E[Xs] > E[Ys] = 2s
s+1 log n + o(1) and

∆Xs = o(1), where the random variable Ys counts the number of cliques of size s−2 in NG(n,p′)(u, v)
for given vertices u and v. By (4) and the union bound, we get

P

h
Es
i
6

�
n

2

�
q − p
1− p

exp

�
−E

�
Xs

�
+
∆Xs

2

�
6 n2

�
q − p′

�
exp

�
− 2s

s+ 1
log n+ o(1)

�
=

n2p′√
log n log log n

exp
�
− 2s

s+ 1
log n+ o(1)

�
=

as
log log n

(log n)
− (s−3)(s+2)

2(s−2)(s+1)
�
1 + o(1)

�
= o(1).

We have q � rs and P[G(n, p) ∈ As] 6 P[G(n, q) ∈ As] +P[Es]. Thus, if P[G(n, p) ∈ As] −→X 0
when n runs over N4, then P[G(n, q) ∈ As] −→X 0 when n runs over N4, contradicting Case 3.10.
This shows that P[G(n, p) ∈ As]→ 0 when n runs over N4. �

From Cases 3.8–3.11, we deduce that P[G(n, p) ∈ As]→ 0 as n→ 0, completing the proof.

4. An upper bound on the threshold

In this section, we present an upper bound on the threshold for the property As. Let us first recall
the following definition. For any positive integer k, the k-th power of a graph Γ , denoted by Γ k, is
the graph with vertex set V (Γ ) such that two distinct vertices x, y are adjacent in Γ k if and only
if the distance between x, y in Γ is at most k. We need the following result on the threshold of the
appearance of the k-th power of a Hamiltonian cycle.

Theorem 4.1 ([11, 16, 17]). There exists a constant c > 0 such that, if p > c logn
n , then G(n, p)

contains a Hamiltonian cycle whp. For every integer k > 2, if p � n−1/k, then G(n, p) contains
the k-th power of a Hamiltonian cycle whp.
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As a consequence of Theorem 4.1, we have the following.

Corollary 4.2. For every positive fixed integers k and r, if p � n−1/k(log n)σk+2, then G(n, p)
contains the k-th power of a Hamiltonian path with probability at least 1 − 1

nr for all sufficiently
large n, where σk+2 can be determined from (2).

Proof. By Theorem 4.1, if
b
p � n−1/k(log n)σk+2−1, then G(n,

b
p) contains the k-th power of a

Hamiltonian path with probability at least 1− 1
e for all sufficiently large n. To boost this probability

to 1− 1
nr , it suffices to apply the coupling technique by taking the union of dr log ne independent

copies of G(n,
b
p) on vertex set [[n]] and letting p = dr log ne

b
p.

We say a graph Γ has the property Fs if for any subset S ⊆ V (Γ ) of size s− 1, Γ [NΓ (S)] has
at least s− 1 vertices and contains the (s− 2)-th power of a Hamiltonian path.

Lemma 4.3. Let s > 3 and n > s − 2. Assume that both properties Ds,s−2 and Fs hold for a
graph G on n vertices. Then, wsat(G,Ks) 6 (s− 2)n−

�
s−1
2

�
.

Proof. If n ∈ {s− 2, s− 1}, then the result is clearly valid. Let n > s and let Ω be a clique of size
s−2 in G. We define a spanning subgraph H of G as follows. The graph H contains all edges of G
with both endpoints in Ω and also all edges of G with endpoints in both Ω and NG(Ω). We still
have to add to H some other edges going outside NG[Ω]. For every v ∈ V (G)\NG[Ω], we add s−2
edges of G adjacent to v described below. Since G satisfies Fs, the graph Hv = G[NG({v} ∪ Ω)]
has at least s−1 vertices and contains the (s−2)-th power of a Hamiltonian path. Beginning from
a starting vertex, denote the vertices of Hv going in the natural order induced by the Hamiltonian
path by xv1, . . . , x

v
hv

, where hv = |V (Hv)|. Note that hv > s− 1. We add the edges vxv1, . . . , vx
v
s−2

to H for any v ∈ V (G) \NG[Ω]. It is easy to see that H is of size (s − 2)n −
�
s−1
2

�
, so it suffices

to prove that H is a weakly Ks-saturated subgraph of G.

First, all edges with both endpoints in NG(Ω) can be activated, since they belong to a Ks

containing Ω. Next, for each v ∈ V (G) \NG[Ω], we may activate the edges vxvs−1, . . . , vx
v
hv

one by
one, since every such edge belongs to a Ks containing the previous s− 2 vertices of the (s− 2)-th
power of the Hamiltonian path. Finally, each edge xy with x, y ∈ V (G) \NG[Ω] can be activated.
To see this, note that NG({x, y}∪Ω) contains a clique of size s−2, say Ωxy, since G satisfies Ds,s−2.
It follows from Ωxy ⊆ NG(Ω) that the edges with both endpoints in Ωxy are already activated and
so xy is the last edge of the {x, y} ∪Ωxy of size s and can be activated as well.

We define here an event in G(n, p) to use in later proofs. For each subset U of vertices, let GU
be the event that G(n, p)[U ] does not contain the (s− 2)-th power of a Hamiltonian path.

Lemma 4.4. Let s > 3 be a fixed integer and let p� n−1/(2s−3)(log n)(s+σs−3)/(2s−3). Then,

P
�
G(n, p) has both properties Ds,s−2 and Fs

�
−→ 1

as n→∞.

Proof. By Lemma 3.5, the property Ds,s−2 holds in G(n, p) whp when

p� n
− 2

3(s−1) (log n)
2

3(s−2)(s−1) .

Therefore, by the assumption on p, we deduce that P[G(n, p) has the property Ds,s−2] → 1 as
n→∞. Below, we explore the behavior of P[G(n, p) has the property Fs].
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Fix W ⊆ [[n]] of size s − 1 and set m = nps−1/2. By Theorem 2.5 and by applying Corollary
4.2 after substituting k, r, n with s− 2, 3s, m, respectively, we derive that

P

�
GNG(n,p)(W )

�
6 P

h ���NG(n,p)(W )
��� 6 mi+

X
U⊆[[n]]
|U|>m

P

h
U = NG(n,p)(W )

i
P

�
GU
�

6 exp
�
−m

4

�
+m−3s

X
U⊆[[n]]
|U|>m

P

h
U = NG(n,p)(W )

i
= exp

�
−m

4

�
+m−3sP

h ���NG(n,p)(W )
��� > mi

6 exp
�
−m

4

�
+m−3s.

As m > n1/3 for all sufficiently large n, it follows from the union bound that the probability that
G(n, p) does not have the property Fs is at mostX

|W |=s−1

�
exp

�
−m

4

�
+m−3s

�
6 exp

 
(s− 1) log n− n

1
3

4

!
+

1

n
= o(1).

This means that P[G(n, p) has the property Fs]→ 1 as n→∞, completing the proof.

Korándi and Sudakov [12] proved, if p is a constant probability and s > 3 is a fixed integer,
then wsat(G(n, p),Ks) = (s− 2)n−

�
s−1
2

�
whp. The following theorem generalizes their result.

Theorem 4.5. Let s > 3 be a fixed integer and let p � n−1/(2s−3)(log n)(s+σs−3)/(2s−3). Then,
G(n, p) has the property As whp.

Proof. By Theorem 2.11, G(n, p) is a weakly Ks-saturated subgraph of Kn whp and thus we get
wsat(G(n, p),Ks) > wsat(Kn,Ks) = (s − 2)n −

�
s−1
2

�
whp. It remains to prove that there exists

a weakly Ks-saturated subgraph of G(n, p) of size at most (s − 2)n −
�
s−1
2

�
whp. So, the result

immediately follows from Lemmas 4.3 and 4.4.

We point out here that Theorem 1.1 is concluded from Theorems 3.4, 3.7, and 4.5.

5. An upper bound on wsat(G(n, p),Ks)

By considering what we did in the first paragraph of the proof of Lemma 3.1, one obtains that
wsat(G(n, p),Ks) = e(G(n, p))(1 + o(1)) whp when p� n−2/(s+1). Also, it follows from Theorem
4.5 that wsat(G(n, p),Ks) = (s − 2)n −

�
s−1
2

�
whp when p � n−1/(2s−3)(log n)(s+σs−3)/(2s−3). In

this section, we prove Theorem 1.2 which gives an upper bound on wsat(G(n, p),Ks) for all the
remaining values of p. It is worth mentioning that wsat(G(n, p),Ks) > (s−2)n−

�
s−1
2

�
whp, since

G(n, p) is a weakly Ks-saturated subgraph of Kn whp for those values of p by Theorem 2.11.

Lemma 5.1. Let s > 3, G be a graph, and W be a subset of V (G) having the following two
properties.

(i) For any vertex u ∈ V (G) \W , G[NG(u) ∩W ] has at least s − 1 vertices and contains the
(s− 2)-th power of a Hamiltonian path.
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(ii) For every two distinct vertices u, v ∈ V (G)\W , NG(u, v)∩W contains a clique of size s−2.

Then, wsat(G,Ks) 6 e(G[W ]) + (s− 2)|V (G) \W |.

Proof. According to (i), for each u ∈ V (G)\W , we may fix a Hamiltonian path Pu of G[NG(u)∩W ]
such that P s−2u ⊂ G[NG(u) ∩W ]. Let H be a spanning subgraph of G containing all edges with
both endpoints in W and also all (s− 2)|V (G) \W | edges in(

uv

����� u ∈ V (G) \W and v is one of the s− 2 initial
vertices of Pu beginning from a starting vertex

)
.

Let us show that H is a weakly Ks-saturated subgraph of G. Note that all edges with both
endpoints in W are initially activated. Let u ∈ V (G) \ W . Beginning from a starting vertex,
denote the vertices of G[NG(u) ∩ W ] going in the natural order induced by Pu by v1, . . . , vgu ,
where gu = |NG(u) ∩W |. Property (i) ensures that gu > s − 1. The edges uv1, . . . , uvs−2 are
initially activated and so we may active the edges uvs−1, . . . , uvgv one by one, since every such
edge belongs to a Ks containing the previous s − 2 vertices of P s−2u . Hence, all edges of G going
out of W are now activated. Let u, v ∈ V (G) \W be adjacent in G. Property (ii) ensures that
the edge uv belongs to a Ks whose other edges are already activated and so the edge uv can be
activated as well. This shows that H is a weakly Ks-saturated subgraph of G which implies that

wsat(G,Ks) 6 e
�
G[W ]

�
+ (s− 2)

��V (G) \W
��.

Proof of Theorem 1.2. For the purpose of simplification, set f(n) = (log n)s+σs−3
È
w(n). If p 6

1/(n log n), then Theorem 2.1 yields that wsat(G(n, p),Ks) 6 e(G(n, p)) 6 n/
√

log n whp which
results in the assertion. Also, if 1/(n log n) 6 p 6 (f/n)1/(s−1), then n2p → ∞ as n → ∞ and
therefore, it follows from Theorem 2.3 that wsat(G(n, p),Ks) 6 e(G(n, p)) 6 n2p 6 f2/p2s−3

whp which results in the assertion. Furthermore, the result follows from Theorem 4.5 when p �
n−1/(2s−3)(log n)(s+σs−3)/(2s−3). So, we may assume that�

f

n

� 1
s−1

6 p 6 n−
1

2s−3 (log n)
s+σs−2
2s−3 . (5)

Now, let G ∼ G(n, p) and W = [[m]], where m = bf/ps−1c. Note that, it follows from (5) that
m 6 n and moreover, m2p → ∞ as n → ∞. Hence, e(G[W ]) 6 m2p whp by Theorem 2.3 and
so e(G[W ]) 6 f2/p2s−3 whp. From the latter inequality and in view of Lemma 5.1, it remains to
show that the properties (i) and (ii) in the statement of Lemma 5.1 hold whp for G and our choice
of W .

Set g = bmp/2c. For a given vertex u ∈ V (G) \W , using Theorem 2.5 and (5), we may write

P

h��NG(u) ∩W
�� 6 gi 6 exp

�
−

�
mp− g

�2
2mp

�
6 exp

�
− f

8ps−2

�
6 exp

�
−n

s−2
2s−3

�
when n is sufficiently large. Noting that w(n) → ∞ as n −→ ∞ and by applying Corollary 4.2
after substituting k, r, n with s− 2, 4, g, respectively, we derive that

P

�
GNG(u)∩W

�
6 P

h��NG(u) ∩W
�� 6 gi+

X
U⊆[[n]]
|U|>g

P

�
U = NG(u) ∩W

�
P

�
GU
�
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6 exp
�
−n

s−2
2s−3

�
+ g−4

X
U⊆[[n]]
|U|>g

P

�
U = NG(u) ∩W

�
= exp

�
−n

s−2
2s−3

�
+ g−4P

h��NG(u) ∩W
�� > gi

6 exp
�
−n

s−2
2s−3

�
+

(log n)2s

n
4s−8
2s−3

for all large enough n. Hence, if n is large enough, thenX
u∈V (G)\W

P

�
GNG(u)∩W

�
6 n exp

�
−n

s−2
2s−3

�
+

(log n)2s

n
2s−5
2s−3

= o(1).

Therefore, (i) holds in G whp using the union bound.

Finally, concerning (ii), let Hs be the event that there exist two distinct vertices u, v ∈ V (G)\W
such that NG(u, v)∩ [[h]] does not contain a clique of size s−2, where h = b(log n)2/p(s+1)/2c. Note
that h 6 m for all sufficiently large n. From Theorem 2.7, we have

P
�
Xs = 0

�
6 exp

�
−E[Xs] +

∆Xs

2

�
, (6)

where the random variable Xs counts the number of cliques of size s− 2 in NG(n,p)(u, v)∩ [[h]]. In
view of (5) and for some constants is and js, we may write

∆Xs =
s−3X̀
=1

�
h

s− 2

��
s− 2

`

��
h− s+ 2

s− 2− `

�
p(s−2)(s+1)− `(`+3)

2

=

�
h

s− 2

�
p

(s−2)(s+1)
2

s−3X̀
=1

�
s− 2

`

��
h− s+ 2

s− 2− `

�
p

(s−2)(s+1)−`(`+3)
2

= E[Xs]
s−3X̀
=1

(s− 2)!

`!(s− `− 2)!2
hs−`−2

�
1 +O

�
1

h

��
p

(s−2)(s+1)−`(`+3)
2

= E[Xs]O
�
(log n)is

� s−3X̀
=1

p
`(s−`−2)

2

= E[Xs]O
�
(log n)js

�
n
− s−3

2(2s−3)

= o
�
E[Xs]

�
.

Now, by (6) and the union bound, we get

P
�
Hs

�
6

�
n

2

�
exp

�
−
�

h

s− 2

�
p(

s
2)−1

�
1 + o(1)

��
6 exp

�
2 log n− hs−2p(

s
2)−1

(s− 2)!

�
1 +O

�
1

h

�� �
1 + o(1)

��
6 exp

�
2 log n− (log n)2(s−2)

(s− 2)!

�
1 + o(1)

��
= o(1).

This shows that (ii) occurs in G whp and completes the proof.
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Manebach, 1967), Teubner, Leipzig, 1968, pp. 25–31.

[7] B. Bollobás and A. Thomason, Threshold functions, Combinatorica 7 (1987), 35–38.

[8] L.R. Fontes, R.H. Schonmann, and V. Sidoravicius, Stretched exponential fixation in
stochastic Ising models at zero temperature, Comm. Math. Phys. 228 (2002), 495–518.

[9] C.M. Fortuin, P.W. Kasteleyn, and J. Ginibre, Correlation inequalities on some par-
tially ordered sets, Comm. Math. Phys. 22 (1971), 89–103.
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Appendix A. Proof of Lemma 3.2

It could be that Lemma 3.2 is a known result in the literature. Since we could not find any
reference, we include its proof here.

Proof of Lemma 3.2. Let Xs be the number of edges of G(n, p) that do not belong to any Ks. For
every two distinct vertices u, v ∈ [[n]] and every subset W ⊆ [[n]] \ {u, v} of size s− 2, consider the
event K[W ] saying that W is a clique in NG(n,p)(u, v). Let µ(u, v) count the number of subsets W
as above such that K[W ] occurs. We have

E[Xs] =

�
n

2

�
pP
�
µ(1, 2) = 0

�
. (7)

Let

λ =
X

W∈([[n]]\{u,v}s−2 )

P
�
K[W ]

�
=

�
n− 2

s− 2

�
p

(s−2)(s+1)
2 (8)

and

∆ =
X

W1,W2∈([[n]]\{u,v}s−2 )
W1 6=W2

W1∩W2 6=∅

P

�
K[W1] ∩K[W2]

�

=
s−3X̀
=1

�
n− 2

s− 2

��
s− 2

`

��
n− s

s− 2− `

�
p(s−2)(s+1)− `(`+3)

2 . (9)

We have

λ =
ns−2

(s− 2)!

�
1 +O

�
1

n

��
2s

s+ 1
(s− 2)!n−(s−2)(log n)h(n)

(s−2)(s+1)
2

=
2s log n

s+ 1
h(n)

(s−2)(s+1)
2 +O

�
log n

n

�
(10)

and thus

2 log n+ log p− λ = 2 log n+

�
−2 log n

s+ 1
+

2 log log n

(s− 2)(s+ 1)
+ log

�
h(n)

��
15



−
�

2s log n

s+ 1
h(n)

(s−2)(s+1)
2

�
+O(1)

=
2 log log n

(s− 2)(s+ 1)
+ log

�
h(n)

�
− 2s log n

s+ 1

�
h(n)

(s−2)(s+1)
2 − 1

�
+O(1). (11)

By applying Lemma 3.5, we may assume that h(n) = O(1). Since λ = O(log n) by (10) and
∆ = λo(n−1/(s+1) log n) by Lemma 3.6, we find from Theorem 2.7 that

E[Xs] 6

�
n

2

�
p exp

�
−λ+

∆

2

�
(12)

= exp
�
2 log n+ log p− λ+ o(1)

�
. (13)

Let w(n)→∞ as n→∞. As h(n) = O(1), we obtain from (11) that

2 log n+ log p− λ 6 2 log log n

(s− 2)(s+ 1)
− 2s log n

s+ 1

�
log logn

s(s− 2) log n
+

(s− 2)(s+ 1)w(n)

2 log n

�
+O(1)

= −s(s− 2)w(n) +O(1) −→ −∞ (14)

as n → ∞. Hence, it follows from (13) and (14) that E[Xs] = o(1) and so Part (i) of Lemma 3.2
follows from Corollary 2.2.

In order to prove Part (ii) of Lemma 3.2, let w(n) → −∞ as n → ∞. It is easy to check that
1 − x > exp(−x − 2x2) for each real number x ∈ [0, 1/4]. Using this fact and since λ = O(log n),
we find from (8) and Theorem 2.6 that

P
�
µ(1, 2) = 0

�
>

Y
W∈([[n]]\{u,v}s−2 )

�
1−P

�
K[W ]

��
=
�

1− p
(s−2)(s+1)

2

�(n−2
s−2)

> exp

��
n− 2

s− 2

��
−p

(s−2)(s+1)
2 − 2p(s−2)(s+1)

��
= exp

�
−λ− 2λp

(s−2)(s+1)
2

�
(15)

= exp(−λ) exp
�
o
�
n−

1
s+1 (lnn)2

��
= exp(−λ)

�
1 + o

�
n−

1
s+1 (lnn)2

��
(16)

for all large enough n. Also, since λ = O(log n), it follows from (7) and (15) that

E[Xs] >

�
n

2

�
p exp

�
−λ− 2λp

(s−2)(s+1)
2

�
= exp

�
2 log n+ log p− λ+ o(1)

�
. (17)

Below, we apply (17) to show that

E[Xs] = o
�
E[Xs]

2
�
. (18)

Before proving (18), we need to establish some inequalities. It is straightforward to verify that
(1−x)m 6 1− mx

2 for every integer m > 2 and positive real number x 6 1− 2−1/(m−1). Using this

fact and letting h0 = 1− 2−2/(s
2−s−4), we find that

h(n)
(s−2)(s+1)

2 − 1 6 (1− h0)
(s−2)(s+1)

2 − 1 6 −(s− 2)(s+ 1)

4
h0 (19)
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if 0 < h(n) 6 1− h0, and moreover,

h(n)
(s−2)(s+1)

2 − 1 =
�
1−

�
1− h(n)

�� (s−2)(s+1)
2 − 1 6 −(s− 2)(s+ 1)

4

�
1− h(n)

�
(20)

if 1− h0 6 h(n) < 1.

To prove (18), it suffices to consider the following three cases.

Case A.1. Assume that the set N1 consisting of all positive integers n with h(n) > 1 is infinite.

Proof. Since w(n)→ −∞ as n→∞, we deduce that w(n) = o(log n). From (11), we get

2 log n+ log p− λ =
2 log log n

(s− 2)(s+ 1)
− 2s log n

s+ 1

�
log log n

s(s− 2) log n
+

(s− 2)(s+ 1)w(n)

2 log n

�
+O

�
log n

(s−2)(s+1)
2X

k=2

kX
i=0

�
log log n

log n

�k−i �w(n)

log n

�i�

= −s(s− 2)w(n) +O

�
w(n)

(s−2)(s+1)
2X

k=2

kX
i=1

�
log log n

log n

�k−i �w(n)

log n

�i−1
+ o(1)

�
= −s(s− 2)w(n)

�
1 + o(1)

�
−→∞

when n runs over N1. Thus, it follows from (17) that E[Xs] −→∞ when n runs over N1. �

Case A.2. Assume that the set N2 consisting of all positive integers n with 0 < h(n) 6 1− h0 is
infinite.

Proof. From (11), (19), and the assumptions of Lemma 3.2, we find that

2 log n+ log p− λ > 2 log log n

(s− 2)(s+ 1)
− ε log n+

s(s− 2)

2
h0 log n −→∞

when n runs over N2. Thus, it follows from (17) that E[Xs] −→∞ when n runs over N2. �

Case A.3. Assume that the set N3 consisting of all positive integers n with 1− h0 6 h(n) < 1 is
infinite.

Proof. We obtain from (11) and (20) that

2 log n+ log p− λ > 2 log log n

(s− 2)(s+ 1)
+ log(1− h0) +

s(s− 2)

2

�
1− h(n)

�
log n −→∞

when n runs over N3. Thus, it follows from (17) that E[Xs] −→∞ when n runs over N3. �

From Cases A.1–A.3, we deduce that E[Xs] −→∞ as n→ 0, proving (18).

To proceed, we estimate P[µ(1, 2) = µ(3, 4) = 0]. For each subset W ⊆ [[n]] \ [[4]] of size s− 2,
consider the event K ′[W ] saying that W is a clique in either NG(n,p)(1, 2) or NG(n,p)(3, 4). Let µ′

count the number of subsets W as above such that K ′[W ] happens. We have

P

�
µ(1, 2) = µ(3, 4) = 0

�
6 P

�
µ′ = 0

�
. (21)
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Let

λ′ =
X

W ′∈([[n]]\[[4]]s−2 )

P

�
K ′[W ]

�
=

�
n− 4

s− 2

�
p

(s−2)(s+1)
2

�
2− p2(s−2)

�
(22)

and

∆′ =
X

W1,W2∈([[n]]\[[4]]s−2 )
W1 6=W2

W1∩W2 6=∅

P

�
K ′[W1] ∩K ′[W2]

�

=
s−3X̀
=1

�
n− 4

s− 2

��
s− 2

`

��
n− s− 2

s− 2− `

�
2p(s−2)(s+1)− `(`+3)

2

�
1 + p2`

�
. (23)

It follows from (8) and (22) that λ′ = 2λ(1 +O((log n)/n)). Also, it follows from (9) and (23) that
∆′ = 2∆(1 + o(1)). Since λ = O(log n) by (10) and ∆ = λo(n−1/(s+1) log n) by Lemma 3.6, we
conclude from Theorem 2.7 that

P[µ′ = 0] 6 exp

�
−λ′ + ∆′

2

�
(24)

= exp

�
−2λ

�
1 +O

�
log n

n

��
+∆

�
1 + o(1)

��
= exp(−2λ) exp

�
o
�
n−

1
s+1 (log n)2

��
= exp(−2λ)

�
1 + o

�
n−

1
s+1 (log n)2

��
. (25)

In the same way, let us estimate P[µ(1, 2) = µ(2, 3) = 0]. For each subset W ⊆ [[n]] \ [[3]] of size
s− 2, consider the event K ′′[W ] saying that W is a clique in either NG(n,p)(1, 2) or NG(n,p)(2, 3).
Let µ′′ count the number of subsets W as above such that K ′′[W ] happens. We have

P
�
µ(1, 2) = µ(2, 3) = 0

�
6 P

�
µ′′ = 0

�
. (26)

Let

λ′′ =
X

W ′∈([[n]]\[[3]]s−2 )

P

�
K ′′[W ]

�
=

�
n− 3

s− 2

�
p

(s−2)(s+1)
2

�
2− ps−2

�
(27)

and

∆′′ =
X

W1,W2∈([[n]]\[[3]]s−2 )
W1 6=W2

W1∩W2 6=∅

P

�
K ′′[W1] ∩K ′′[W2]

�

=
s−3X̀
=1

�
n− 3

s− 2

��
s− 2

`

��
n− s− 1

s− 2− `

�
2p(s−2)(s+1)− `(`+3)

2

�
1 + p`

�
. (28)

It follows from (8) and (27) that λ′′ = 2λ(1 + O(
È

(log n)/n)). Also, it follows from (9) and (28)

that ∆′′ = 2∆(1 + o(1)). Since λ = O(log n) by (10) and ∆ = λo(n−1/(s+1) log n) by Lemma 3.6,
we derive from Theorem 2.7 that

P[µ′′ = 0] 6 exp

�
−λ′′ + ∆′′

2

�
(29)
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= exp

 
−2λ

 
1 +O

 Ê
log n

n

!!
+∆

�
1 + o(1)

�!
= exp(−2λ) exp

�
o
�
n−

1
s+1 (log n)2

��
= exp(−2λ)

�
1 + o

�
n−

1
s+1 (log n)2

��
. (30)

Finally, by combining the relations (7), (16), (18), (21), (25), (26), and (30), we derive for each
s > 3 that

Var[Xs] = E
h
X2
s

i
−E[Xs]

2

= E[Xs] +

�
n

2

��
n− 2

2

�
p2P

�
µ(1, 2) = µ(3, 4) = 0

�
+ n(n− 1)(n− 2)p2P

�
µ(1, 2) = µ(2, 3) = 0

�
−
��

n

2

�
pP
�
µ(1, 2) = 0

��2

6 E[Xs] +

�
n

2

�2

p2 exp(−2λ)
�
1 + o

�
n−

1
s+1 (log n)2

��
+ n3p2 exp(−2λ)

�
1 + o

�
n−

1
s+1 (log n)2

��
−
�
n

2

�2

p2 exp(−2λ)
�
1 + o

�
n−

1
s+1 (log n)2

��
= o

�
E[Xs]

2
�
.

Thus, Part (ii) of Lemma 3.2 follows from Corollary 2.4.
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