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Abstract

Skew-regular Hadamard matrices are introduced as skew-type Hadamard
matrices for which the absolute value of the row sums are constant. It
is shown that there are at least 157132 skew-regular Hadamard ma-
trices of order 36 and none of order 16m2, m a positive integer. The
implications are significant.

1 Introduction

A matrix W of order n with p ≤ n nonzero entries in {−1, 1} in each row
and column and mutually orthogonal rows (and columns) is called a weighing
matrix denoted by W (n, p). A weighing matrix W (n, p) with p = n is a
Hadamard and with p = n − 1 a conference matrix. A Hadamard matrix
is regular if it has a constant row sum. The order of a regular Hadamard
matrix is a perfect square n2, and the row and column sums are n. The
Hadamard matrix H is said to be skew-type if H + HT = 2I. A skew-
regular Hadamard matrix is a skew-type Hadamard matrix for which the
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absolute value of row sums is constant. Skew-type and regular Hadamard
matrices are two distinguished classes with multiple applications; see [3, 5].
It is conjectured that there is a skew-type Hadamard matrix of order 4n and
a regular Hadamard matrix of order 4n2 for any positive integer n. Skew-
regular Hadamard matrices inherit properties of both skew-type and regular
Hadamard matrices and, as such, lead to some powerful results. The primary
reference for the article is [3].

2 Non-Existence

The following is well-known.

Lemma 1. Let H be a Hadamard matrix of order n with column-sums ci.
Then

∑
c2i = n2.

Proof. Let j be the all-ones column vector.∑
c2i = (c1, . . . , cn)(c1, . . . , cn)T = (jTH)(jTH)T = jT (HHT )j = jT (nI)j = n2.

In 1977, Best [2] showed that the column sums of a Hadamard matrix of
order n are the same if and only if they are all equal to ±

√
n.

Lemma 2. Let H be a skew-regular Hadamard matrix of order 4m2. Then
there are 2m2 −m rows with row-sum −2m.

Proof. Let k be the number of rows with row-sum −2m. Since H is skew-
regular, the remaining 4m2 − k rows have row-sum 2m. Moreover, since
H is skew-type, there are exactly k columns with column-sum 2m + 2 and
4m2 − k columns with column-sum −2m + 2. By Lemma 1, we have that
k(2m+2)2+(4m2−k)(−2m+2)2 = 16m4. Solving for k, we have the desired
result.

Theorem 3. Let H be a skew-regular Hadamard matrix of order 4m2. Then
m is odd.

Proof. Note that each column sum of H is 2m+2 modulo 4 and that negating
any row of H changes every column sum by exactly two modulo 4. By
Lemma 2, there are exactly 2m2 −m rows with row-sum −2m. If we negate
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each of these rows to obtain H ′, the column-sums of H are changed by
2(2m2 −m) modulo 4. Since each column-sum of H was originally 2m + 2
modulo 4, the new column-sums are all 2 modulo 4. Since H ′ is regular, the
column-sums must equal ±2m. Thus, m is odd.

We now have a simple observation which has some significant implica-
tions.

Theorem 4. Let H be a Hadamard matrix of order 4m2. H is equivalent
to a skew-regular Hadamard matrix if and only if it is equivalent to a regular
Hadamard matrix and a skew-type Hadamard matrix.

Proof. The first implication is quite simple. Assume that H is equivalent to
a skew-regular Hadamard matrix K. We may negate appropriate rows of K
to arrive at a regular Hadamard matrix, and K itself is skew-type.

The second implication is trickier. Assume that H is equivalent to a skew-
type Hadamard matrix S and a regular Hadamard matrix R. Note that
permuting the rows and columns of a Hadamard matrix does not change
row or column sums. Thus, permute the rows and columns of R so that
R = PSQT for some signed permutation matrices P,Q. Note that the row-
sums of SQT (= P TR) are all ±2m, and thus, so are QSQT . Since S is skew-
type, QSQT is also skew-type. Thus, QSQT is a skew-regular Hadamard
matrix equivalent to H.

The following are some immediate corollaries.

Corollary 5. Let H be a skew-type Hadamard matrix of order n. If n 6=
4(2k + 1)2 and n 6= 1, then H is not equivalent to a regular Hadamard
matrix.

Corollary 6. Let H be a regular Hadamard matrix of order n. If n 6=
4(2k + 1)2 and n 6= 1, then H is not equivalent to a skew-type Hadamard
matrix.

The existence of skew-type Hadamard matrices of order 16m2 are known
for infinitely many m [3], and so none is equivalent to a regular Hadamard
matrix. The conclusion is interesting even for Hadamard matrices as small
as order 16.
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3 Existence

We begin with the only example of a skew-regular Hadamard matrix of order
a power of 2, namely, of order 4. Throughout −1 is shown by −.

Example 7. 
1 1 − 1
− 1 1 1
1 − 1 1
− − − 1


This example led to more searches for Hadamard matrices with similar

properties, and not only one but many of order 36 was constructed.
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Example 8. We start with one example of an order of 36.

1 1 −− 1 1 1 − 1 1 −−−−− 1 1 − 1 1 −− 1 −− 1 1 − 1 1 1 − 1 1 1 1
− 1 1 1 − 1 − 1 −−− 1 −−− 1 −− 1 1 − 1 1 − 1 − 1 −−− 1 −−−− 1
1 − 1 − 1 −−− 1 − 1 1 −−−−− 1 1 1 1 1 1 1 −− 1 1 1 − 1 1 1 1 − 1
1 − 1 1 1 −− 1 1 −−− 1 1 − 1 −−− 1 −− 1 1 1 1 − 1 − 1 1 1 1 − 1 1
− 1 −− 1 1 1 − 1 −−− 1 −−−− 1 1 1 − 1 − 1 1 1 − 1 −−−− 1 −−−
−− 1 1 − 1 − 1 −−−−−− 1 − 1 1 1 1 1 −− 1 1 1 1 1 1 1 1 − 1 1 1 −
− 1 1 1 − 1 1 1 − 1 1 − 1 −−−−−− 1 1 1 1 −− 1 − 1 1 1 − 1 1 1 − 1
1 − 1 − 1 −− 1 1 1 −−−− 1 −−− 1 − 1 1 1 − 1 1 −−− 1 −−− 1 −−
− 1 −−− 1 1 − 1 −− 1 − 1 1 −−−−− 1 1 1 1 1 1 1 1 − 1 1 1 − 1 1 1
− 1 1 1 1 1 −− 1 1 1 −− 1 1 1 − 1 1 −−−−− 1 1 − 1 1 − 1 1 − 1 − 1
1 1 − 1 1 1 − 1 1 − 1 1 1 − 1 − 1 −− 1 −− 1 1 1 1 1 − 1 −− 1 − 1 −−
1 −− 1 1 1 1 1 − 1 − 1 − 1 −−− 1 1 1 − 1 − 1 1 −−− 1 1 − 1 − 1 1 1
1 1 1 −− 1 − 1 1 1 − 1 1 1 −− 1 1 −−− 1 1 − 1 −− 1 1 − 1 − 1 1 1 −
1 1 1 − 1 1 1 1 −− 1 −− 1 1 1 − 1 − 1 1 1 1 1 − 1 −− 1 − 1 −−− 1 −
1 1 1 1 1 − 1 −−−− 1 1 − 1 − 1 − 1 − 1 1 −− 1 1 −− 1 − 1 1 1 − 1 1
−− 1 − 1 1 1 1 1 − 1 1 1 − 1 1 1 − 1 1 − 1 −−−−− 1 − 1 1 1 − 1 1 −
− 1 1 1 1 − 1 1 1 1 − 1 − 1 −− 1 1 1 1 1 − 1 −− 1 1 1 −−− 1 −− 1 −
1 1 − 1 −− 1 1 1 − 1 −−− 1 1 − 1 1 −− 1 1 − 1 − 1 1 1 1 − 1 1 − 1 −
−−− 1 −− 1 − 1 − 1 − 1 1 −−−− 1 1 1 − 1 − 1 −−− 1 − 1 −− 1 1 −
−−−−−−− 1 1 1 −− 1 − 1 −− 1 − 1 − 1 −−− 1 1 − 1 − 1 1 −− 1 1
1 1 − 1 1 −−−− 1 1 1 1 −− 1 − 1 − 1 1 1 −− 1 1 1 1 − 1 1 −− 1 1 −
1 −− 1 − 1 −−− 1 1 −−−−− 1 − 1 −− 1 1 1 − 1 − 1 −− 1 1 −− 1 −
−−−− 1 1 −−− 1 − 1 −− 1 1 −−− 1 1 − 1 − 1 −− 1 1 −− 1 1 − 1 −
1 1 −−−− 1 1 − 1 −− 1 − 1 1 1 1 1 1 1 − 1 1 1 −− 1 −− 1 1 − 1 − 1
1 − 1 −−− 1 −−−−−− 1 − 1 1 −− 1 − 1 −− 1 1 1 1 1 −− 1 − 1 −−
− 1 1 −−−−−−−− 1 1 −− 1 − 1 1 −−− 1 1 − 1 −− 1 1 − 1 − 1 1 −
−−− 1 1 − 1 1 − 1 − 1 1 1 1 1 −− 1 −− 1 1 1 − 1 1 1 1 − 1 − 1 1 −−
1 1 −−−−− 1 −− 1 1 − 1 1 −−− 1 1 −−−−− 1 − 1 −−−− 1 1 1 1
− 1 − 1 1 −− 1 1 −−−−−− 1 1 −−− 1 1 − 1 −−− 1 1 −−−− 1 1 1
− 1 1 − 1 −−−− 1 1 − 1 1 1 − 1 − 1 1 − 1 1 1 1 − 1 1 1 1 −−−− 1 1
−−−− 1 − 1 1 −− 1 1 −−−− 1 1 −−−− 1 − 1 1 − 1 1 1 1 −−−− 1
1 1 −− 1 1 − 1 −−−− 1 1 −−−− 1 − 1 −−−−− 1 1 1 1 1 1 −−−−
− 1 −−−−− 1 1 1 1 1 − 1 − 1 1 − 1 1 1 1 − 1 1 1 −− 1 1 1 1 1 −−−
− 1 − 1 1 −−−−−−−− 1 1 − 1 1 − 1 − 1 1 −−−−−− 1 1 1 1 1 −−
− 1 1 − 1 − 1 1 − 1 1 −−−−−−−−−−−− 1 1 − 1 −−− 1 1 1 1 1 −
−−−− 1 1 − 1 −− 1 − 1 1 − 1 1 1 1 − 1 1 1 − 1 1 1 −−−− 1 1 1 1 1


Two skew Hadamard matrices are considered SH-equivalent if they are

similar by a signed permutation matrix. In [1], a classification of SH-inequivalent
skew-type Hadamard matrices of order 36 for some types was given and a
total of 157132 SH-inequivalent skew-type Hadamard matrices of order 36
were found. Here, we try to find which of those are SH-equivalent to a skew-
regular Hadamard matrix. Since permutations on rows or columns do not
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change row and column sums, we only need to consider signed permutation
matrices with nonzero entries only on the main diagonal. A straightforward
check, i.e., examining all such signed permutation matrices of order 36, is
computationally time-consuming as there are 236 such matrices. Our exper-
iment shows that the running time for each 157132 matrix is about one to
two minutes on a single desktop computer. To make it faster, we pursue a
different approach. Let H be a skew-type Hadamard matrix of order 36. We
are looking for a signed permutation matrix P with nonzero entries only on
the main diagonal such that P THP has row sums 6 or −6. Let jn be all
one column vector of dimension n. Then H(Pj36) is a column vector with
entries 6 or −6 which means that H(Pj36) = 0 (mod 3). This shows that
Pj36, which is a (−1, 1) column vector, is contained in the null space of H
over the three element finite field GF (3). Note that the dimension of the null
space of H over GF (3) is 18; see [1]. So instead of 236 candidates for Pj36,
we have 218 candidates coming from the null space of H over GF (3). We
find a standard basis for the null space of H over GF (3) and then examine
all 218 linear combinations of the vectors in the basis with coefficients −1
and 1 as candidates for Pj36. This approach is much faster than the initially
straightforward approach. It took only 10 minutes to examine all 157132
matrices on a single desktop computer. The results show that every matrix
in the list of 157132 matrices is SH-equivalent to a skew-regular Hadamard
matrix. We have the following.

Theorem 9. There are at least 157132 skew-regular Hadamard matrices of
order 36.

The 157132 skew-regular Hadamard matrices of order 36 are available
upon request.

The next Hadamard matrix of order 4m2, m odd, is order 100, which
motivates us to raise the following questions.

• Is it true that, as it may be the case for order 36, any skew-type
Hadamard matrix of order 100 is equivalent to a regular one?

• Is it true that any skew-type Hadamard matrix of order 4(2k + 1)2, k
any positive integer, is equivalent to a regular one?

• Are there more than 157132 inequivalent skew-regular Hadamard ma-
trices of order 36?
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4 Applications

This section connects skew-regular Hadamard matrices, biregular skew con-
ference matrices, and doubly regular tournaments with a two-intersection
set. Moreover, we show that a skew-regular Hadamard matrix gives rise to
a conference matrix with maximum excess; refer to [4] for details.

For a (0, 1,−1)-matrix W , the sum of entries of W , denoted E(W ), is
called the excess of the matrixW . An upper bound of the excess of conference
matrices of order n, n− 1 a non-square, is known as follows.

Proposition 10. [4, Proposition 7] Let W be a conference matrix of order n
with n−1 a non-square. Let k be an odd integer such that k ≤

√
n− 1 < k+2.

Then

E(W ) ≤ n(k2 + 2k + n− 1)

2(k + 1)

with equality holds if and only if Wjn has entries k, k + 2.

A two-intersection set with parameters (k;α, β) for a 1-design (P,B) is a
k-subset D of P such that the set

{|B ∩D| : B ∈ B}

contains exactly two numbers α and β. That is to say, letting N be the
incidence matrix of the design (P,B), there exists a two-intersection set with
parameters (k;α, β) if and only if there exist (0, 1)-vectors x, y indexed by
the elements of P such that jT|P |x = k, xTN = αyT + β(jT|P | − yT ).

A tournament is regarded as a design with |P | = |B| and incidence matrix
N satisfying N+NT = J−I. A tournament of order 4t+3 is doubly regular
if its adjacency matrix A satisfies that AAT = (t+ 1)I + tJ .

Proposition 11. Let n = 4m2 − 1, m ∈ N, be an order for a doubly regular
tournament. If a two-intersection set with parameters (2m2 + m;m2,m2 +
m) exists for a doubly regular tournament of order n, then a skew-regular
Hadamard matrix of order 4m2 exists.

Proof. Let A be the adjacency matrix of a doubly regular tournament of order

n. It is easy to see that the matrix C =

(
0 jTn
−jn A− AT

)
is a conference

matrix of order n+ 1.
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Let x, y be (0, 1)-vectors so that ATx = αy+β(jn−y). LetD be a diagonal

matrix of order n with diagonal entries Dii = −2xi + 1, and D′ =

(
1 0
0 D

)
.

We claim that D′CD′ is a skew-regular conference matrix of order n + 1.
First we calculate CD′ as follows:

CD′jn+1 =

(
0 −2xT + jTn
−jn (A− AT )D

)(
1
jn

)
=

(
2xT jn − jTn jn

−jn + (A− AT )(−2x+ jn)

)
=

(
−2m− 1

−jn − 2(J − I − AT )x

)
=

(
−2m− 1

−jn − 2Jx+ 2x+ 2Ax

)
=

(
−2m− 1

(−2|D| − 1)jn + 2x+ 4(αy + β(jn − y))

)
=

(
−2m− 1

(2m− 1)jn + 2x− 4my

)
=

(
−2m− 1

2m(jn − 2y) + 2x− jn

)
.

Since D(2x− jn) = −jn, we have

D′CD′ =

(
−2m− 1

2mD(jn − 2y)− jn

)
.

Since D(jn−2y) is a (1,−1)-vector, D′CD′ has row sums ±2m−1. Therefore
D′CD′ is a skew-regular conference matrix of order 4m2

Then H := D′CD′ + I is a skew-regular Hadamard matrix of order 4m2.

Question 12. Which doubly regular tournaments of order 4m2 − 1 have a
two-intersection set with parameters (2m2 +m;m2,m2 +m)?

Theorem 13. (i) The existence of the following is equivalent.

(a) A skew-regular Hadamard matrix of order 4m2.

(b) A skew conference matrix of order 4m2 with row sums 2m−1,−2m−
1.
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(c) A doubly regular tournament of order 4m2−1 with a two-intersection
set with parameters (2m2 +m;m2,m2 +m).

(ii) If a skew-regular Hadamard matrix of order 4m2 exists, then a confer-
ence matrix of order 4m2 with maximal excess exists.

Proof. (i) Set n = 4m2 − 1.

(a) ⇔ (b): Assume (a) holds. Let H be a skew-regular Hadamard
matrix of order 4m2. Then, after permuting rows and columns simul-
taneously, we may assume that.

Hj4m2 =

(
2mj2m2+m

−2mj2m2−m

)
.

Define C = H − I. Then C is a skew conference matrix of order 4m2

and

Cj4m2 =

(
(2m− 1)j2m2+m

(−2m− 1)j2m2−m

)
,

which implies that (2) holds. The converse follows from reversing the
argument above.

(b) ⇔ (c): Assume that (c) holds. Let A be the adjacency matrix of a
doubly regular tournament of order n. It is easy to see that the matrix

C =

(
0 jTn
−jn A− AT

)
is a conference matrix of order n+ 1.

Let x, y be (0, 1)-vectors so that ATx = m2y+(m2+m)(jn−y), xT jn =
2m2 +m. Let D be a diagonal matrix of order n with diagonal entries

Dii = −2xi + 1, and D′ =

(
1 0
0 D

)
. We claim that D′CD′ is a skew-

regular conference matrix of order n + 1. First we calculate CD′jn+1.
We use jTnDjn = −2jTn x + jTn jn = −2m − 1 and (A − AT )Djn =
2m(jn − 2y) + 2x to obtain

CD′jn+1 =

(
0 jTn
−jn A− AT

)(
1
Djn

)
=

(
jTnDjn

−jn + (A− AT )Djn

)
=

(
−2m− 1

2m(jn − 2y) + 2x− jn

)
.
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Since D(2x− jn) = −jn, we have

D′CD′ =

(
−2m− 1

2mD(jn − 2y)− jn

)
.

Since D(jn − 2y) is a (1,−1)-vector, D′CD′ has row sums ±2m − 1.
Therefore, D′CD′ is an absolutely regular symmetric conference matrix
of order 4m2. Then H := D′CD′+I is a skew-regular Hadamard matrix
of order 4m2.

The converse follows from reversing the argument above.

(ii) Let C be a skew conference matrix of order 4m2 such that Cj4m2 =(
(2m− 1)j2m2+m

(−2m− 1)j2m2−m

)
. Let C ′ be the matrix obtained from C by negat-

ing the last 2m2 − m rows. Then C ′ is a conference matrix, and the
excess of C ′ is

(2m− 1)(2m2 +m) + (2m+ 1)(2m2 −m) = 8m3 − 2m,

which attains the upper bound in Proposition 10.
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